题解【洛谷P5658】[CSP-S 2019]括号树
一道简单的栈与\(\text{DP}\)的结合。
首先介绍一下序列上的括号匹配问题,也就是此题在序列上的做法:
- 设 \(dp_i\) 表示以 \(i\) 结尾的合法的括号序列个数, \(ss_i\) 表示 \(1\) 到 \(i\) 合法的括号序列字串个数。
- 维护一个栈,左括号 \(\text{push}\) 它的位置到栈中,右括号取出栈顶 \(dp_i = dp_{sta_{top} - 1} + 1\) , 然后 \(ss_i=ss_{i-1}+dp_{i}\)。
- 答案即为 \((1\times ss_1) \oplus (2 \times ss_2) \oplus \dots \oplus (n \times ss_n)\) ,其中 \(\oplus\) 为异或。
考虑将这个问题转移到树上,只需要一个可回退的栈即可。
这题真的不难,我考场上为什么没想出来啊
我太菜了
代码:
#include <bits/stdc++.h>
#define itn int
#define gI gi
#define int long long
using namespace std;
inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
}
const int maxn = 500003;
int n, ans, topp, ss[maxn], dp[maxn], sta[maxn], sum[maxn];
int fa[maxn], tot, head[maxn], ver[maxn * 2], nxt[maxn * 2];
char s[maxn];
inline void add(int u, int v) {ver[++tot] = v, nxt[tot] = head[u], head[u] = tot;}
void dfs(int u, int f)
{
int fl = -1;
if (s[u] == '(') sta[++topp] = u; //左括号加入栈
else if (topp > 0) //右括号且栈中有对应的左括号
{
fl = sta[topp--]; //栈顶元素
dp[u] = dp[fa[fl]] + 1; //dp 数组记得 +1
}
sum[u] = sum[fa[u]] + dp[u]; //sum[u] 表示 1 到 u 的路径上合法括号序列的个数
for (int i = head[u]; i; i = nxt[i])
{
int v = ver[i];
if (v == f) continue;
dfs(v, u);
}
//将栈还原到访问节点 u 之前的状态
if (s[u] == '(') --topp;
else if (fl != -1)
{
sta[++topp] = fl;
}
}
signed main()
{
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
n = gi();
scanf("%s", s + 1);
bool fl = true;
for (int i = 2; i <= n; i+=1)
{
fa[i] = gi();
if (fa[i] != i - 1) fl = false;
add(fa[i], i), add(i, fa[i]);
}
if (fl) //序列上的做法
{
for (int i = 1; i <= n; i+=1)
{
if (s[i] == '(') sta[++topp] = i;
else if (topp) dp[i] = dp[sta[topp--] - 1] + 1;
ss[i] = ss[i - 1] + dp[i];
ans ^= (i * ss[i]);
}
printf("%lld\n", ans);
return 0;
}
dfs(1, 0);
for (int i = 1; i <= n; i+=1) ans ^= (i * sum[i]);
printf("%lld\n", ans);
return 0;
}
题解【洛谷P5658】[CSP-S 2019]括号树的更多相关文章
- 上午小测3 T1 括号序列 && luogu P5658 [CSP/S 2019 D1T2] 括号树 题解
前 言: 一直很想写这道括号树..毕竟是在去年折磨了我4个小时的题.... 上午小测3 T1 括号序列 前言: 原来这题是个dp啊...这几天出了好几道dp,我都没看出来,我竟然折磨菜. 考试的时候先 ...
- 洛谷 P3373 【模板】线段树 2
洛谷 P3373 [模板]线段树 2 洛谷传送门 题目描述 如题,已知一个数列,你需要进行下面三种操作: 将某区间每一个数乘上 xx 将某区间每一个数加上 xx 求出某区间每一个数的和 输入格式 第一 ...
- [CSP-S 2019]括号树
[CSP-S 2019]括号树 源代码: #include<cstdio> #include<cctype> #include<vector> inline int ...
- 括号树 noip(csp??) 2019 洛谷 P5658
洛谷AC通道 本题,题目长,但是实际想起来十分简单. 首先,对于树上的每一个后括号,我们很容易知道,他的贡献值等于上一个后括号的贡献值 + 1.(当然,前提是要有人跟他匹配,毕竟题目中要求了,是不同的 ...
- 题解 洛谷P5018【对称二叉树】(noip2018T4)
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...
- 题解 洛谷 P3396 【哈希冲突】(根号分治)
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...
- 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...
- 题解-洛谷P4229 某位歌姬的故事
题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...
- 题解-洛谷P4724 【模板】三维凸包
洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...
随机推荐
- jsp的九大内置对象+四大作用域
1.request是httpServletRequest的对象,代表发送的请求信息 2.response是httpServletResponse的对象,代表响应请求返回的信息 3.session会话是 ...
- ArcGIS Engine开发碰到问题及解决方式
1.问题描述——运行提示:ArcGIS version not specified. You must call RuntimeManager.Bind before creating any Arc ...
- Python 静态类型检查 mypy 示例
以下所有例子都参考了最新版本的 Python 文档与 mypy 文档 必备条件 安装最新版本的 Python 和 mypy 要学会按需配置自己的编辑器,比如我的 VSCode 就装好了 Python ...
- 剑指offer-面试题39-数组中出现次数超过一半的数字-快速排序
/* 题目: 数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字. 例如输入一个长度为9的数组{1,2,3,2,2,2,5,4,2}.由于数字2在数组中出现了5次,超过数组长度的一半,因此输 ...
- c#日期时间段判断
select * from 表名 where (case when ISDATE(字段名)=1 then CONVERT(varchar(100),cast(字段名 as datetime),23) ...
- NodeJS_0001:关于install的方式
最近在写Node程序的时候,突然对 npm install 的-save和-save-dev 这两个参数的使用比较混乱.其实博主在这之前对这两个参数的理解也是模糊的,各种查资料和实践后对它们之间的异同 ...
- 通过 Chrome浏览器 查看http请求报文
as we all know HTTP 请求报文 包含请求行.请求头和请求体三部分 请求行:(请求方式 资源路径 协议/版本) 例如:POST /test/index.html HTTP/1.1 P ...
- JAVA 递归线程池测试 ExecutorService / ForkJoinPool
测试工具使用递归的方式获取子进程的Msg消息,目前有2种常用的ExecutorService / ForkJoinPool 为了测试哪种效果较好,我们来写个测试Demo,循环5555555次+1(加锁 ...
- 一起学Vue之表单输入绑定
在Vue进行前端开发中,表单的输入是基础且常见的功能,本文以一个简单的小例子,简述v-model数据绑定的用法,仅供学习分享使用,如有不足,还请指正. 基础用法 你可以用 v-model 指令在表单 ...
- extern关键字详解
基本理解 extern放在变量或者函数之前,表示变量或者函数的定义在别的文件中,提示编译器遇到此变量和函数时在其他模块中寻找其定义. extern有两个作用 1.当它与"C"一起连 ...