Diophantus of Alexandria

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2326    Accepted Submission(s): 887

Problem Description
Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first mathematicians to study equations where variables were restricted to integral values. In honor of him, these equations are commonly called diophantine equations. One of the most famous diophantine equation is x^n + y^n = z^n. Fermat suggested that for n > 2, there are no solutions with positive integral values for x, y and z. A proof of this theorem (called Fermat's last theorem) was found only recently by Andrew Wiles.

Consider the following diophantine equation:

1 / x + 1 / y = 1 / n where x, y, n ∈ N+ (1)

Diophantus is interested in the following question: for a given n, how many distinct solutions (i. e., solutions satisfying x ≤ y) does equation (1) have? For example, for n = 4, there are exactly three distinct solutions:

1 / 5 + 1 / 20 = 1 / 4
1 / 6 + 1 / 12 = 1 / 4
1 / 8 + 1 / 8 = 1 / 4

Clearly, enumerating these solutions can become tedious for bigger values of n. Can you help Diophantus compute the number of distinct solutions for big values of n quickly?

Input
The first line contains the number of scenarios. Each scenario consists of one line containing a single number n (1 ≤ n ≤ 10^9). 
Output
The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Next, print a single line with the number of distinct solutions of equation (1) for the given value of n. Terminate each scenario with a blank line. 
Sample Input
2
4
1260
Sample Output
Scenario #1: 3
Scenario #2: 113
令y = n + k (k >= 1), 则x = n^2/k + n , x为整数, 所以k为n^2的约数,因为x >= y, 所以k <= n, 所以
可以将问题简化为求n^2的不大于n的约数的个数,然后素数分解。
Accepted Code:
 /*************************************************************************
> File Name: 1299.cpp
> Author: Stomach_ache
> Mail: sudaweitong@gmail.com
> Created Time: 2014年07月10日 星期四 16时39分38秒
> Propose:
************************************************************************/ #include <cmath>
#include <string>
#include <cstdio>
#include <fstream>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; int n;
int prime[];
bool vis[];
int cnt = ; void isPrime() {
cnt = ;
int k = (int)sqrt(1000000000.0) + ;
for (int i = ; i <= k; i++) vis[i] = true;
for (int i = ; i <= k; i++) {
if (vis[i]) {
prime[cnt++] = i;
for (int j = i*i; j <= k; j += i) vis[j] = false;
}
}
} int main(void) {
isPrime();
int c = ;
int t;
scanf("%d", &t);
while (t--) {
scanf("%d", &n);
int ans = ;
for (int i = ; i < cnt && prime[i] <= n; i++) {
int tmp = ;
while (n % prime[i] == ) {
tmp++;
n /= prime[i];
}
ans *= + * tmp;
}
if (n > ) ans *= ;
printf("Scenario #%d:\n", c++);
printf("%d\n\n", (ans + ) / );
} return ;
}
 
 

Hdu 1299的更多相关文章

  1. hdu 1299 Diophantus of Alexandria(数学题)

    题目链接:hdu 1299 Diophantus of Alexandria 题意: 给你一个n,让你找1/x+1/y=1/n的方案数. 题解: 对于这种数学题,一般都变变形,找找规律,通过打表我们可 ...

  2. HDU 1299 基础数论 分解

    给一个数n问有多少种x,y的组合使$\frac{1}{x}+\frac{1}{y}=\frac{1}{n},x<=y$满足,设y = k + n,代入得到$x = \frac{n^2}{k} + ...

  3. hdu 1299 Diophantus of Alexandria (数论)

    Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  4. hdu 1299 Diophantus of Alexandria

    1/x + 1/y = 1/n 1<=n<=10^9给你 n 求符合要求的x,y有多少对 x<=y// 首先 x>n 那么设 x=n+m 那么 1/y= 1/n - 1/(n+ ...

  5. 数学--数论--HDU 1299 +POJ 2917 Diophantus of Alexandria (因子个数函数+公式推导)

    Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first ma ...

  6. 求n的因子个数与其因子数之和

    方法一:朴素算法:O(n). #include<bits/stdc++.h> using namespace std; int get_num(int n){ ; ;i<=n;++i ...

  7. HDOJ Problem - 1299

    题意:等式 1 / x + 1 / y = 1 / n (x, y, n ∈ N+ (1) 且 x <= y) ,给出 n,求有多少满足该式子的解.(1 <= n <= 1e9) 题 ...

  8. HDU——PKU题目分类

    HDU 模拟题, 枚举1002 1004 1013 1015 1017 1020 1022 1029 1031 1033 1034 1035 1036 1037 1039 1042 1047 1048 ...

  9. hdu 1573 X问题 (非互质的中国剩余定理)

    X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. Spring MVC(六)--通过URL传递参数

    URL传递参数时,格式是类似这样的,/param/urlParam/4/test,其中4和test都是参数,这就是所谓的Restful风格,Spring MVC中通过注解@RequestMapping ...

  2. 04_Hibernate检索方式

    一.Hibernate检索方式概述 OID检索方式:按照对象的OID来检索对象(get/load) HQL检索方式:使用面向对象的HQL查询语言 QBC检索方式:使用QBC(Query By Crit ...

  3. 整合SSH框架最基本的例子

    ssh框架整合 一.思路 1.导包 struts2: \apps\struts2-blank\WEB-INF\lib\所有包 struts2-spring-plugin-2.3.28.jar hibe ...

  4. angular 基本树结构

    HTML: http://www.ngnice.com/showcase/#/tree/basic <link rel="stylesheet" href="vie ...

  5. spring中的ResponseEntity理解

    参考: https://blog.csdn.net/weixin_37869477/article/details/82762976 https://blog.csdn.net/sswqzx/arti ...

  6. Angularjs 1 使用filter格式化输出href

    Angularjs版本: 1.3.5 工作中,由于是多级菜单,如果上级菜单为空,就会访问Angularjs 默认的state,然后再展开菜单,我找资料之后,才知道是通过filter来格式化输出数据的, ...

  7. LUOGU 9月 月赛

    T1 签到题 传送门 解题思路 将原式化简一下,让n个1变成 (10^n-1)/9 ,然后再移项,变成了高次同余形式,用bsgs求解.交了好几次都是80,后来才被告知要快速乘. 代码 #include ...

  8. php连接数据库插入数据

    <form action="updata.php" method="post"> 姓名:<input type="text" ...

  9. MYSQL实现列拼接,即同一个字段,多条记录拼接成一条

    一.首先,新建三张表 DROP TABLE IF EXISTS `article`; CREATE TABLE `article` ( `id` ) unsigned NOT NULL AUTO_IN ...

  10. svn里update以后还是有红色的感叹号怎么办

    不用那么麻烦,直接还原就行了,客户端是TortoiseSVN的话,在该文件或文件夹上点右键,选择TortoiseSVN——revert有时还原之后系统反应没那么快,还是显示红色感叹号,刷新几下就正常了 ...