当有多个features时,无法通过图像来评估hypothesis

当我们的hypothesis只有一个features时,可以通过观察它的图像来看它是否overfitting,但是如果我们有多个features的情况下,就无法通过画出图形来看是否overfitting.我们需要另一种方法来评估我们的函数。

评估hypothesis的标准方法

这儿我们将我们的Dataset分成两部分,一部分用来做为training set(70%),一部分用来做为Test set(30%),mtest表示test example的个数。

注意这个7/3分是针对随机排列的数据来分的,如果数据之间有一定的顺序的话,则应先将这些数据打乱后(随机分布),取前70%为training set,后30%为test set.

如果数据本来就是随机分布的(没有一定的顺序),则将前70%做为training set,后30%做为test set。

评估hypothesis的标准方法:For linear regression

1>我们从之前分的training data中求得parameter Θ

2>用求得的hypothesis来计算test set error, linear regression的test set error计算公式如上图所示。

评估hypothesis的标准方法: For logistic regression

1>先从training data(70%的data set)中求得parameter Θ

2> 用求得的hypothesis来计算test set error, logistic regression的test set error计算公式如上图所示Jtest(Θ)=...

3>另一种代替test set error的方法是Misclassification error也叫(0/1 misclassification error),如果误分类了,则err为1,正确分类的话,则为0;计算公式如上图所示Test error = .....

评估预测函数(2)---对hypothesis进行评估的更多相关文章

  1. 评估预测函数(3)---Model selection(选择多项式的次数) and Train/validation/test sets

    假设我们现在想要知道what degree of polynomial to fit to a data set 或者 应该选择什么features 或者 如何选择regularization par ...

  2. 评估预测函数(1)---算法不能达到我们的目的时,Deciding what to try next

    在设计机器学习系统时,一些建议与指导,让我们能明白怎么选择一条最合适,最正确的道路. 当我们要开发或者要改进一个机器学习系统时,我们应该接下来做些什么? try smaller sets of fea ...

  3. ubuntu之路——day10.2单一数字评估指标与满足和优化的评估指标

    单一数字评估指标: 我们在平时常用到的模型评估指标是精度(accuracy)和错误率(error rate),错误率是:分类错误的样本数站样本总数的比例,即E=n/m(如果在m个样本中有n个样本分类错 ...

  4. xshell 6评估已过期解决办法 / xftp 6 评估已过期解决办法

    1.工具用途介绍 Xshell  是一个强大的安全终端模拟软件,它支持SSH1, SSH2, 以及Microsoft Windows 平台的TELNET 协议.Xshell 通过互联网到远程主机的安全 ...

  5. Stanford机器学习笔记-6. 学习模型的评估和选择

    6. 学习模型的评估与选择 Content 6. 学习模型的评估与选择 6.1 如何调试学习算法 6.2 评估假设函数(Evaluating a hypothesis) 6.3 模型选择与训练/验证/ ...

  6. sklearn中的模型评估-构建评估函数

    1.介绍 有三种不同的方法来评估一个模型的预测质量: estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题. Scor ...

  7. 【数学建模】day14-建立GM(1,1)预测评估模型应用

    学习建立GM(1,1)灰色预测评估模型,解决实际问题: SARS疫情对某些经济指标的影响问题 一.问题的提出 2003 年的 SARS 疫情对中国部分行业的经济发展产生了一定影响,特别是对部分 疫情较 ...

  8. Spark随机深林扩展—OOB错误评估和变量权重

    本文目的 当前spark(1.3版)随机森林实现,没有包括OOB错误评估和变量权重计算.而这两个功能在实际工作中比较常用.OOB错误评估可以代替交叉检验,评估模型整体结果,避免交叉检验带来的计算开销. ...

  9. SparkML之推荐引擎(二)---推荐模型评估

    本文内容和代码是接着上篇文章来写的,推荐先看一下哈~ 我们上一篇文章是写了电影推荐的实现,但是推荐内容是否合理呢,这就需要我们对模型进行评估 针对推荐模型,这里根据 均方差 和 K值平均准确率 来对模 ...

随机推荐

  1. Python 推导式详解

    各种推导式详解 推导式的套路 之前我们已经学习了最简单的列表推导式和生成器表达式.但是除此之外,其实还有字典推导式.集合推导式等等. 下面是一个以列表推导式为例的推导式详细格式,同样适用于其他推导式. ...

  2. D03-R语言基础学习

    R语言基础学习——D03 20190423内容纲要: 1.导入数据 (1)从键盘输入 (2)从文本文件导入 (3)从excel文件导入 2.用户自定义函数   3.R访问MySQL数据库 (1)安装R ...

  3. ultraedit 实际应用技巧

    Tip 1: Alt+C 列模式可以说最初选择使用这个文本编辑软件,原因很简单,就是因为“她”具有列编辑模式.如果您还不知道什么是列编辑模式的话,我想您应该好好研究一下啦.这是一个超级“赞”的功能.在 ...

  4. [LOJ2065] [SDOI2016]模式字符串

    题目链接 洛谷:https://www.luogu.org/problemnew/show/P4075 LOJ:https://loj.ac/problem/2065 Solution 这种题看起来就 ...

  5. 创建包含CRUD操作的Web API接口2:实现Get方法

    本节是前一节的延续,上一节中我们已经为我们的Web API项目创建必要的基础设施. 在本节中,我们将在我们的控制器类中实现操作方法,这些方法用来处理HTTP GET请求. 根据Web API命名约定, ...

  6. NIO开发Http服务器(2):项目结构

    最近学习了Java NIO技术,觉得不能再去写一些Hello World的学习demo了,而且也不想再像学习IO时那样编写一个控制台(或者带界面)聊天室.我们是做WEB开发的,整天围着tomcat.n ...

  7. 1+X证书学习日志 —— css样式表

    ## 因为初级的内容较多,所以选了一些有用的 需要记忆的内容写下 方便日后回顾 CSS语法   选择符{属性:属性值;} ##             所有的css代码 都要放在css样式表里面    ...

  8. UML软件工程第一次实验

    顶层设计 UC1诊所设备管理 UC1.1 统计设备使用情况 用况标识号 UC1.1 用况名称 统计设备使用情况 创建者 派克 创建时间 2017-9-25 参与者 客户 说明 客户需要知道自己诊所设备 ...

  9. CSS中常见的布局

    一.css中常见的布局有哪些? (1)两列布局 (2)三列布局 (3)弹性布局 (4)圣杯布局 (5)双飞翼布局 二.具体实现  (1)两列布局 https://www.cnblogs.com/qin ...

  10. cookie遇到java.lang.IllegalArgumentException: Control character in cookie value or attribute

    java.lang.IllegalArgumentException: Control character in cookie value or attribute. 该异常说明cookie中的val ...