53、Spark Streaming:输入DStream之Kafka数据源实战
一、基于Receiver的方式
1、概述
基于Receiver的方式: Receiver是使用Kafka的高层次Consumer API来实现的。receiver从Kafka中获取的数据都是存储在Spark Executor的内存中的,
然后Spark Streaming启动的job会去处理那些数据。 然而,在默认的配置下,这种方式可能会因为底层的失败而丢失数据。如果要启用高可靠机制,让数据零丢失,就必须启用Spark Streaming的
预写日志机制(Write Ahead Log,WAL)。该机制会同步地将接收到的Kafka数据写入分布式文件系统(比如HDFS)上的预写日志中。所以,
即使底层节点出现了失败,也可以使用预写日志中的数据进行恢复。 如何进行Kafka数据源连接? 1、在maven添加依赖
groupId = org.apache.spark
artifactId = spark-streaming-kafka_2.10
version = 1.5.1 2、使用第三方工具类创建输入DStream
JavaPairReceiverInputDStream<String, String> kafkaStream =
KafkaUtils.createStream(streamingContext, [ZK quorum], [consumer group id], [per-topic number of Kafka partitions to consume]); 需要注意的要点: 1、Kafka中的topic的partition,与Spark中的RDD的partition是没有关系的。所以,在KafkaUtils.createStream()中,
提高partition的数量,只会增加一个Receiver中,读取partition的线程的数量。不会增加Spark处理数据的并行度。 2、可以创建多个Kafka输入DStream,使用不同的consumer group和topic,来通过多个receiver并行接收数据。 3、如果基于容错的文件系统,比如HDFS,启用了预写日志机制,接收到的数据都会被复制一份到预写日志中。因此,
在KafkaUtils.createStream()中,设置的持久化级别是StorageLevel.MEMORY_AND_DISK_SER。 Kafka命令:
bin/kafka-topics.sh --zookeeper 192.168.1.107:2181,192.168.1.108:2181,192.168.1.109:2181 --topic TestTopic --replication-factor 1 --partitions 1 --create bin/kafka-console-producer.sh --broker-list 192.168.1.107:9092,192.168.1.108:9092,192.168.1.109:9092 --topic TestTopic [ZK quorum:
192.168.1.191:2181,192.168.1.192:2181,192.168.1.193:2181
2、java版本
package cn.spark.study.streaming; import java.util.Arrays;
import java.util.HashMap;
import java.util.Map; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaPairReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils; import scala.Tuple2; /**
* 基于Kafka receiver方式的实时wordcount程序
* @author Administrator
*
*/
public class KafkaReceiverWordCount { public static void main(String[] args) {
SparkConf conf = new SparkConf()
.setMaster("local[2]")
.setAppName("KafkaWordCount");
JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(5)); // 使用KafkaUtils.createStream()方法,创建针对Kafka的输入数据流
Map<String, Integer> topicThreadMap = new HashMap<String, Integer>();
// 使用多少个线程去拉取topic的数据
topicThreadMap.put("WordCount", 1); // 这里接收的四个参数;第一个:streamingContext
// 第二个:ZK quorum; 第三个:consumer group id 可以自己写;
// 第四个:per-topic number of Kafka partitions to consume
JavaPairReceiverInputDStream<String, String> lines = KafkaUtils.createStream(
jssc,
"192.168.1.135:2181,192.168.1.136:2181,192.168.1.137:2181",
"DefaultConsumerGroup",
topicThreadMap); // wordcount逻辑
JavaDStream<String> words = lines.flatMap( new FlatMapFunction<Tuple2<String,String>, String>() { private static final long serialVersionUID = 1L; @Override
public Iterable<String> call(Tuple2<String, String> tuple)
throws Exception {
return Arrays.asList(tuple._2.split(" "));
} }); JavaPairDStream<String, Integer> pairs = words.mapToPair( new PairFunction<String, String, Integer>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(String word)
throws Exception {
return new Tuple2<String, Integer>(word, 1);
} }); JavaPairDStream<String, Integer> wordCounts = pairs.reduceByKey( new Function2<Integer, Integer, Integer>() { private static final long serialVersionUID = 1L; @Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
} }); wordCounts.print(); jssc.start();
jssc.awaitTermination();
jssc.close();
} } ##运行程序 ##新建一个topic
[root@spark1 kafka]# bin/kafka-topics.sh --zookeeper 192.168.1.135:2181,192.168.1.136:2181,192.168.1.137:2181 --topic WordCount --replication-factor 1 --partitions 1 --create ##启动生产者,然后可以输入一些数据,观察程序端的输出统计
[root@spark1 kafka]# bin/kafka-console-producer.sh --broker-list 192.168.1.135:9092,192.168.1.136:9092,192.168.1.137:9092 --topic WordCount
二、基于Direct的方式
1、概述
这种新的不基于Receiver的直接方式,是在Spark 1.3中引入的,从而能够确保更加健壮的机制。替代掉使用Receiver来接收数据后,这种方式会周期性地查询Kafka,来获得
每个topic+partition的最新的offset,从而定义每个batch的offset的范围。当处理数据的job启动时,就会使用Kafka的简单consumer api来获取Kafka指定offset范围的数据。 这种方式有如下优点:
1、简化并行读取:如果要读取多个partition,不需要创建多个输入DStream然后对它们进行union操作。Spark会创建跟Kafka partition一样多的RDD partition,并且会并行
从Kafka中读取数据。所以在Kafka partition和RDD partition之间,有一个一对一的映射关系。 2、高性能:如果要保证零数据丢失,在基于receiver的方式中,需要开启WAL机制。这种方式其实效率低下,因为数据实际上被复制了两份,Kafka自己本身就有高可靠的机制,
会对数据复制一份,而这里又会复制一份到WAL中。而基于direct的方式,不依赖Receiver,不需要开启WAL机制,只要Kafka中作了数据的复制,那么就可以通过Kafka的副本进行恢复。 3、一次且仅一次的事务机制:
基于receiver的方式,是使用Kafka的高阶API来在ZooKeeper中保存消费过的offset的。这是消费Kafka数据的传统方式。这种方式配合着WAL机制可以保证数据
零丢失的高可靠性,但是却无法保证数据被处理一次且仅一次,可能会处理两次。因为Spark和ZooKeeper之间可能是不同步的。
基于direct的方式,使用kafka的简单api,Spark Streaming自己就负责追踪消费的offset,并保存在checkpoint中。Spark自己一定是同步的,因此可以保证数据
是消费一次且仅消费一次。 JavaPairReceiverInputDStream<String, String> directKafkaStream =
KafkaUtils.createDirectStream(streamingContext,
[key class], [value class], [key decoder class], [value decoder class],
[map of Kafka parameters], [set of topics to consume]); Kafka命令:
bin/kafka-topics.sh --zookeeper 192.168.1.107:2181,192.168.1.108:2181,192.168.1.109:2181 --topic TestTopic --replication-factor 1 --partitions 1 --create bin/kafka-console-producer.sh --broker-list 192.168.1.107:9092,192.168.1.108:9092,192.168.1.109:9092 --topic TestTopic 192.168.1.191:2181,192.168.1.192:2181,192.168.1.193:2181 metadata.broker.list
2、java版本
package cn.spark.study.streaming; import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set; import kafka.serializer.StringDecoder; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaPairInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils; import scala.Tuple2; /**
* 基于Kafka Direct方式的实时wordcount程序
* @author Administrator
*
*/
public class KafkaDirectWordCount { public static void main(String[] args) {
SparkConf conf = new SparkConf()
.setMaster("local[2]")
.setAppName("KafkaDirectWordCount");
JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(5)); // 首先,要创建一份kafka参数map
Map<String, String> kafkaParams = new HashMap<String, String>();
kafkaParams.put("metadata.broker.list",
"192.168.1.135:9092,192.168.1.136:9092,192.168.1.137:9092"); // 然后,要创建一个set,里面放入,你要读取的topic
// 这个,就是我们所说的,它自己给你做的很好,可以并行读取多个topic
Set<String> topics = new HashSet<String>();
topics.add("WordCount"); // 创建输入DStream
JavaPairInputDStream<String, String> lines = KafkaUtils.createDirectStream(
jssc,
String.class,
String.class,
StringDecoder.class,
StringDecoder.class,
kafkaParams,
topics); // 执行wordcount操作
JavaDStream<String> words = lines.flatMap( new FlatMapFunction<Tuple2<String,String>, String>() { private static final long serialVersionUID = 1L; @Override
public Iterable<String> call(Tuple2<String, String> tuple)
throws Exception {
return Arrays.asList(tuple._2.split(" "));
} }); JavaPairDStream<String, Integer> pairs = words.mapToPair( new PairFunction<String, String, Integer>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(String word) throws Exception {
return new Tuple2<String, Integer>(word, 1);
} }); JavaPairDStream<String, Integer> wordCounts = pairs.reduceByKey( new Function2<Integer, Integer, Integer>() { private static final long serialVersionUID = 1L; @Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
} }); wordCounts.print(); jssc.start();
jssc.awaitTermination();
jssc.close();
} }
53、Spark Streaming:输入DStream之Kafka数据源实战的更多相关文章
- 输入DStream之基础数据源以及基于HDFS的实时wordcount程序
输入DStream之基础数据源以及基于HDFS的实时wordcount程序 一.Java方式 二.Scala方式 基于HDFS文件的实时计算,其实就是,监控一个HDFS目录,只要其中有新文件出现,就实 ...
- 52、Spark Streaming之输入DStream之基础数据源以及基于HDFS的实时wordcount程序
一.概述 1.Socket:之前的wordcount例子,已经演示过了,StreamingContext.socketTextStream() 2.HDFS文件 基于HDFS文件的实时计算,其实就是, ...
- spark streaming 2: DStream
DStream是类似于RDD概念,是对数据的抽象封装.它是一序列的RDD,事实上,它大部分的操作都是对RDD支持的操作的封装,不同的是,每次DStream都要遍历它内部所有的RDD执行这些操作.它可以 ...
- Spark Streaming从Flume Poll数据案例实战和内幕源码解密
本节课分成二部分讲解: 一.Spark Streaming on Polling from Flume实战 二.Spark Streaming on Polling from Flume源码 第一部分 ...
- 5分钟spark streaming实践之 与kafka联姻
你:kafka是什么? 我:嗯,这个嘛..看官网. Apache Kafka® is a distributed streaming platform Kafka is generally used ...
- spark streaming(2) DAG静态定义及DStream,DStreamGraph
DAG 中文名有向无环图.它不是spark独有技术.它是一种编程思想 ,甚至于hadoop阵营里也有运用DAG的技术,比如Tez,Oozie.有意思的是,Tez是从MapReduce的基础上深化而来的 ...
- Spark Streaming + Kafka整合(Kafka broker版本0.8.2.1+)
这篇博客是基于Spark Streaming整合Kafka-0.8.2.1官方文档. 本文主要讲解了Spark Streaming如何从Kafka接收数据.Spark Streaming从Kafka接 ...
- 使用 Kafka 和 Spark Streaming 构建实时数据处理系统
使用 Kafka 和 Spark Streaming 构建实时数据处理系统 来源:https://www.ibm.com/developerworks,这篇文章转载自微信里文章,正好解决了我项目中的技 ...
- 使用 Kafka 和 Spark Streaming 构建实时数据处理系统(转)
原文链接:http://www.ibm.com/developerworks/cn/opensource/os-cn-spark-practice2/index.html?ca=drs-&ut ...
随机推荐
- hystrix,request collapser,请求合并
多个商品,需要发送多次网络请求,调用多次接口,才能拿到结果 可以使用HystrixCollapser将多个HystrixCommand合并到一起,多个command放在一个command里面去执行,发 ...
- 如何在ArcGIS饼状图中下方添加文字
内容源自:ArcGIS10.2基础教程(丁华) 书上要求在统计图的饼状图下方显示“总面积组成”,以及图例是只显示文字. 该如何操作呢? 其实就是在高级属性中选择标题-副标题-显示“总面积组成”即可 而 ...
- EF6 + MySql 建立项目引用失败
EF6 + MySql 建立项目 步骤 在项目中使用” NuGet” 包添加 EntityFramework 和 MySql.Data ,如下图 (1) 在NuGet界面中的“浏览”选项卡 ...
- selenium中元素操作之浏览器窗口滚动&网页日期控件操作(js操作)(五)
js的滚动条scrollIntoView() Arguments[] - python与js之间的羁绊 1.移动到元素element对象的“底端”,与当前窗口的“底部”对齐: driver.execu ...
- ASP.NET SignalR 系列(五)之群组推送
在上一章介绍了 一对一推送的方式,这章重点介绍下群组推送和多人推送 群组主要就是用到了方法:Groups.Add(Context.ConnectionId, groupName); 将不同的连接id加 ...
- 【转载】如何查看sqlserver客户端的版本号信息
在sqlserver的使用过程中,有时候可能会因为sqlserver版本过低等原因的导致无法附加以及还原数据库,我们可以通过sql server management studio软件的帮助菜单参看到 ...
- ES6 新增基本数据类型Symbol
ES6 增加了一个新的基本数据类型 symbol. 不过,和其他基本数据类型相比,它有点与众不同,因为它没有字面量的表现形式,而且创建的方式也有点奇怪,只能通过调用全局函数Symbol()来完成. l ...
- RSA算法二:迪菲赫尔曼公式变形
- MVC、MVP及MVVM之间的关系
介绍 写这篇随笔完全是为了加深自己的印象,毕竟写比看能获得得更多,另外本人对这三种模式的认识还是浅薄的,有待在以后的工作学习中有更深入的理解,因此不免会有误解,这里推荐大家阅读廖雪峰关于MVVM的介绍 ...
- 自定义hybris生成订单的ID格式
在项目local.properties里做出如下定义: keygen.order.code.digits=8 keygen.order.code.start=00000000 keygen.order ...