【概率论】5-9:多项式分布(The Multinomial Distributions)
title: 【概率论】5-9:多项式分布(The Multinomial Distributions)
categories:
- Mathematic
- Probability
keywords:
- The Multinomial Distributions
toc: true
date: 2018-04-04 22:17:23

Abstract: 本文介绍多项式分布的相关知识
Keywords: The Multinomial Distributions
开篇废话
生病的时候才会体会到人生的短暂和生命的含义,你可以选择自己的生活,也可以选择自己的快乐,一切都是正确的。
本文开始介绍多于一个变量的分布,其实分布我们已经学了不少了后面再讲一个双变量的正态分布本章就算结束了,主要学的就是如何使用前面学到的工具来对新的随机变量的性质进行分析。今天我们来分析多项式分布。
多项式是二项分布的一个扩展。
Definition and Derivation of Multinomial Distribution
把二项分布中的两个变量扩展成多个变量,就能得到我们我们今天要介绍的多项式分布,而且遵守和二项式分布一样的放回的采样方式(with replacement),在计数方法中我们也学过多项式系数这个知识,与我们今天要说的多项式分布是紧密相关的,比如我们举个例子:
人类的血型可以分为 A,B,o,AB 四种类型,每种类型都有相应的比例(这个比例是从所有人的类型中统计计算出来的)现在才去放回式的抽样,假设我们抽取了若干个样本,得到随机变量的向量为: x⃗=(XA,XB,Xo,XAB)\vec{x}=(X_A,X_B,X_o,X_{AB})x=(XA,XB,Xo,XAB) 对应的概率为 p⃗=(pA,pB,po,pAB)\vec{p}=(p_A,p_B,p_o,p_{AB})p=(pA,pB,po,pAB) 那么我们可以根据多项式系数的相关知识得到其分布:
f(x⃗∣4,p⃗)=Pr(XA=x1,XB=x2,Xo=x3,XAB=x4)={(nx1x2x3x4)pAx1pBx2pox3pABx4if x1+x2+x3+x4=n0otherwise
f(\vec{x}|4,\vec{p})=Pr(X_A=x_1,X_B=x_2,X_o=x_3,X_{AB}=x_4)\\
=\begin{cases}
\begin{pmatrix}
&n&\\
x_1&x_2&x_3&x_4
\end{pmatrix}p_A^{x_1}p_B^{x_2}p_o^{x_3}p_{AB}^{x_4}&\text{if } x_1+x_2+x_3+x_4=n\\
0&\text{otherwise}
\end{cases}
f(x∣4,p)=Pr(XA=x1,XB=x2,Xo=x3,XAB=x4)=⎩⎨⎧(x1nx2x3x4)pAx1pBx2pox3pABx40if x1+x2+x3+x4=notherwise
这就是多项式系数的扩展,称为多项式分布的的样子,对应于多个随机变量,随机变量的个数为固定值。可以写成一下形式:
(5.9.1)f(x⃗∣n,p⃗)={(nx1…xk)p1x1…pkxkif x1+⋯+xk=n0otherwise
f(\vec{x}|n,\vec{p})=
\begin{cases}
\begin{pmatrix}
&n&\\
x_1&\dots&x_k
\end{pmatrix}p_1^{x_1}\dots p_{k}^{x_k}&\text{if } x_1+\dots+x_k=n\\
0&\text{otherwise}
\end{cases}\tag{5.9.1}
f(x∣n,p)=⎩⎨⎧(x1n…xk)p1x1…pkxk0if x1+⋯+xk=notherwise(5.9.1)
Definition Multinomial Distributions.A discrete random vector X⃗=(X1,…,Xk)\vec{X}=(X_1,\dots,X_k)X=(X1,…,Xk) whose p.f. is given Eq(5.9.1) has the multinomial distribution with parameters nnn and p⃗=(p1,…,pk)\vec{p}=(p_1,\dots,p_k)p=(p1,…,pk) .
这个定义看起来没什么,而且上面的例子也给出了多项式分布的一般用法,接下来我们就说说多项式分布和二项分布的关系。
Relation between the Multinomial and Binomial Distributions
Theorem Suppose that the random vector X⃗=(X1,X2)\vec{X}=(X_1,X_2)X=(X1,X2) has the multinomial distribution with parameters nnn and p⃗=(p1,p2)\vec{p}=(p_1,p_2)p=(p1,p2) .Then X1X_1X1 has the binomial distribution with parameters nnn and p1p_1p1 ,and X2=n−X1X_2=n-X_1X2=n−X1
完整原文地址:https://www.face2ai.com/Math-Probability-5-9-Multinomial-Distribution转载请标明出处
【概率论】5-9:多项式分布(The Multinomial Distributions)的更多相关文章
- 【概率论】5-7:Gama分布(The Gamma Distributions Part I)
title: [概率论]5-7:Gama分布(The Gamma Distributions Part I) categories: - Mathematic - Probability keywor ...
- 【概率论】5-8:Beta分布(The Beta Distributions)
title: [概率论]5-8:Beta分布(The Beta Distributions) categories: - Mathematic - Probability keywords: - Th ...
- 【概率论】5-7:Gama分布(The Gamma Distributions Part II)
title: [概率论]5-7:Gama分布(The Gamma Distributions Part II) categories: - Mathematic - Probability keywo ...
- 【概率论】3-7:多变量分布(Multivariate Distributions Part II)
title: [概率论]3-7:多变量分布(Multivariate Distributions Part II) categories: Mathematic Probability keyword ...
- 【概率论】3-7:多变量分布(Multivariate Distributions Part I)
title: [概率论]3-7:多变量分布(Multivariate Distributions Part I) categories: Mathematic Probability keywords ...
- (转)Gamma分布,Beta分布,Multinomial多项式分布,Dirichlet狄利克雷分布
1. Gamma函数 首先我们可以看一下Gamma函数的定义: Gamma的重要性质包括下面几条: 1. 递推公式: 2. 对于正整数n, 有 因此可以说Gamma函数是阶乘的推广. 3. 4. ...
- 帕累托分布(Pareto distributions)、马太效应
什么是帕累托分布 帕累托分布是以意大利经济学家维弗雷多·帕雷托命名的. 是从大量真实世界的现象中发现的幂次定律分布.这个分布在经济学以外,也被称为布拉德福分布. 帕累托因对意大利20%的人口拥有80% ...
- NLP点滴——文本相似度
[TOC] 前言 在自然语言处理过程中,经常会涉及到如何度量两个文本之间的相似性,我们都知道文本是一种高维的语义空间,如何对其进行抽象分解,从而能够站在数学角度去量化其相似性.而有了文本之间相似性的度 ...
- Python实现12种概率分布(附代码)
今天给大家带来的这篇文章是关于机器学习的,机器学习有其独特的数学基础,我们用微积分来处理变化无限小的函数,并计算它们的变化:我们使用线性代数来处理计算过程:我们还用概率论与统计学建模不确定性. 在这其 ...
随机推荐
- Spring主要用到两种设计模式
Spring主要用到两种设计模式 1.工厂模式 Spring容器就是实例化和管理全部Bean的工厂. 工厂模式可以将Java对象的调用者从被调用者的实现逻辑中分离出来. 调用者只关心被调用者必须满足的 ...
- HTTP API 认证授权术
原文:https://coolshell.cn/articles/19395.html 我们知道,HTTP是无状态的,所以,当我们需要获得用户是否在登录的状态时,我们需要检查用户的登录状态,一般来说, ...
- Java调用WebService方法总结(5)--Axis2调用WebService
Axis2是新一点Axis,基于新的体系结构进行了全新编写,有更强的灵活性并可扩展到新的体系结构.文中demo所使用到的软件版本:Java 1.8.0_191.Axis2 1.7.9. 1.准备 参考 ...
- DIY一个Web框架
一.前言 二.框架结构及实现流程 三.总结 一.前言 当我们了解了Web应用和Web框架,以及HTTP协议的原理之后,我们可以自己动手DIY一个最简单的WEB框架,以加深对Web框架的理解,并为即将学 ...
- MySQL JOIN 连接时,条件为以逗号分隔的字段与 ID 相匹配
一.背景 有一张相片表,一张相片所属标签表,一张相片可以归属于多个标签,表结构如下: 现在需要通过一次查询,得到每一张照片对应的标签名称,标签名称之间以固定的分隔符连接,结果如下图: 二.查询语句 原 ...
- Win10 C盘 系统和保留 占用空间 非常大
Win10 C盘 系统和保留 占用空间 非常大今天在写代码的时候,突然发现Redis起不来了,一看原因,是因为C盘空间不足.然后,我看了下C盘,发现...一个叫系统和保留的东西,居然占了110G的空间 ...
- Flask之基础
一,flask Flask是一个基于Python开发并且依赖jinja2模板和Werkzeug WSGI服务的一个微型框架,对于Werkzeug本质是Socket服务端,其用于接收http请求并对请求 ...
- 加标签的continue用法
1.加标签的continue,类似于C语言的goto语句
- prometheus 告警规则
GitHub网址1 https://github.com/samber/awesome-prometheus-alerts 网址2 https://awesome-prometheus-alerts. ...
- Qt5安装及组件选择(Qt 5.12.0)
组件选择 如下图所示,安装Qt时有选择组件这一步,全部安装未免太占磁盘控件,只需安装我们所需要的组件即可.接下来就分析分析各个组件的作用及含义. “Qt 5.12.0”节点下面是 Qt 的功能模块,包 ...