title: 【概率论】5-9:多项式分布(The Multinomial Distributions)

categories:

- Mathematic

- Probability

keywords:

- The Multinomial Distributions

toc: true

date: 2018-04-04 22:17:23



Abstract: 本文介绍多项式分布的相关知识

Keywords: The Multinomial Distributions

开篇废话

生病的时候才会体会到人生的短暂和生命的含义,你可以选择自己的生活,也可以选择自己的快乐,一切都是正确的。

本文开始介绍多于一个变量的分布,其实分布我们已经学了不少了后面再讲一个双变量的正态分布本章就算结束了,主要学的就是如何使用前面学到的工具来对新的随机变量的性质进行分析。今天我们来分析多项式分布。

多项式是二项分布的一个扩展。

Definition and Derivation of Multinomial Distribution

二项分布中的两个变量扩展成多个变量,就能得到我们我们今天要介绍的多项式分布,而且遵守和二项式分布一样的放回的采样方式(with replacement),在计数方法中我们也学过多项式系数这个知识,与我们今天要说的多项式分布是紧密相关的,比如我们举个例子:

人类的血型可以分为 A,B,o,AB 四种类型,每种类型都有相应的比例(这个比例是从所有人的类型中统计计算出来的)现在才去放回式的抽样,假设我们抽取了若干个样本,得到随机变量的向量为: x⃗=(XA,XB,Xo,XAB)\vec{x}=(X_A,X_B,X_o,X_{AB})x=(XA​,XB​,Xo​,XAB​) 对应的概率为 p⃗=(pA,pB,po,pAB)\vec{p}=(p_A,p_B,p_o,p_{AB})p​=(pA​,pB​,po​,pAB​) 那么我们可以根据多项式系数的相关知识得到其分布:

f(x⃗∣4,p⃗)=Pr(XA=x1,XB=x2,Xo=x3,XAB=x4)={(nx1x2x3x4)pAx1pBx2pox3pABx4if x1+x2+x3+x4=n0otherwise
f(\vec{x}|4,\vec{p})=Pr(X_A=x_1,X_B=x_2,X_o=x_3,X_{AB}=x_4)\\
=\begin{cases}
\begin{pmatrix}
&n&\\
x_1&x_2&x_3&x_4
\end{pmatrix}p_A^{x_1}p_B^{x_2}p_o^{x_3}p_{AB}^{x_4}&\text{if } x_1+x_2+x_3+x_4=n\\
0&\text{otherwise}
\end{cases}
f(x∣4,p​)=Pr(XA​=x1​,XB​=x2​,Xo​=x3​,XAB​=x4​)=⎩⎨⎧​(x1​​nx2​​x3​​x4​​)pAx1​​pBx2​​pox3​​pABx4​​0​if x1​+x2​+x3​+x4​=notherwise​

这就是多项式系数的扩展,称为多项式分布的的样子,对应于多个随机变量,随机变量的个数为固定值。可以写成一下形式:

(5.9.1)f(x⃗∣n,p⃗)={(nx1…xk)p1x1…pkxkif x1+⋯+xk=n0otherwise
f(\vec{x}|n,\vec{p})=
\begin{cases}
\begin{pmatrix}
&n&\\
x_1&\dots&x_k
\end{pmatrix}p_1^{x_1}\dots p_{k}^{x_k}&\text{if } x_1+\dots+x_k=n\\
0&\text{otherwise}
\end{cases}\tag{5.9.1}
f(x∣n,p​)=⎩⎨⎧​(x1​​n…​xk​​)p1x1​​…pkxk​​0​if x1​+⋯+xk​=notherwise​(5.9.1)

Definition Multinomial Distributions.A discrete random vector X⃗=(X1,…,Xk)\vec{X}=(X_1,\dots,X_k)X=(X1​,…,Xk​) whose p.f. is given Eq(5.9.1) has the multinomial distribution with parameters nnn and p⃗=(p1,…,pk)\vec{p}=(p_1,\dots,p_k)p​=(p1​,…,pk​) .

这个定义看起来没什么,而且上面的例子也给出了多项式分布的一般用法,接下来我们就说说多项式分布和二项分布的关系。

Relation between the Multinomial and Binomial Distributions

Theorem Suppose that the random vector X⃗=(X1,X2)\vec{X}=(X_1,X_2)X=(X1​,X2​) has the multinomial distribution with parameters nnn and p⃗=(p1,p2)\vec{p}=(p_1,p_2)p​=(p1​,p2​) .Then X1X_1X1​ has the binomial distribution with parameters nnn and p1p_1p1​ ,and X2=n−X1X_2=n-X_1X2​=n−X1​

完整原文地址:https://www.face2ai.com/Math-Probability-5-9-Multinomial-Distribution转载请标明出处

【概率论】5-9:多项式分布(The Multinomial Distributions)的更多相关文章

  1. 【概率论】5-7:Gama分布(The Gamma Distributions Part I)

    title: [概率论]5-7:Gama分布(The Gamma Distributions Part I) categories: - Mathematic - Probability keywor ...

  2. 【概率论】5-8:Beta分布(The Beta Distributions)

    title: [概率论]5-8:Beta分布(The Beta Distributions) categories: - Mathematic - Probability keywords: - Th ...

  3. 【概率论】5-7:Gama分布(The Gamma Distributions Part II)

    title: [概率论]5-7:Gama分布(The Gamma Distributions Part II) categories: - Mathematic - Probability keywo ...

  4. 【概率论】3-7:多变量分布(Multivariate Distributions Part II)

    title: [概率论]3-7:多变量分布(Multivariate Distributions Part II) categories: Mathematic Probability keyword ...

  5. 【概率论】3-7:多变量分布(Multivariate Distributions Part I)

    title: [概率论]3-7:多变量分布(Multivariate Distributions Part I) categories: Mathematic Probability keywords ...

  6. (转)Gamma分布,Beta分布,Multinomial多项式分布,Dirichlet狄利克雷分布

    1. Gamma函数 首先我们可以看一下Gamma函数的定义: Gamma的重要性质包括下面几条: 1. 递推公式: 2. 对于正整数n, 有 因此可以说Gamma函数是阶乘的推广. 3.  4.  ...

  7. 帕累托分布(Pareto distributions)、马太效应

    什么是帕累托分布 帕累托分布是以意大利经济学家维弗雷多·帕雷托命名的. 是从大量真实世界的现象中发现的幂次定律分布.这个分布在经济学以外,也被称为布拉德福分布. 帕累托因对意大利20%的人口拥有80% ...

  8. NLP点滴——文本相似度

    [TOC] 前言 在自然语言处理过程中,经常会涉及到如何度量两个文本之间的相似性,我们都知道文本是一种高维的语义空间,如何对其进行抽象分解,从而能够站在数学角度去量化其相似性.而有了文本之间相似性的度 ...

  9. Python实现12种概率分布(附代码)

    今天给大家带来的这篇文章是关于机器学习的,机器学习有其独特的数学基础,我们用微积分来处理变化无限小的函数,并计算它们的变化:我们使用线性代数来处理计算过程:我们还用概率论与统计学建模不确定性. 在这其 ...

随机推荐

  1. UOJ269 清华集训2016 如何优雅地求和 下降幂多项式、NTT

    代码 神仙题? 看到连续的点值,那么一定是要利用到连续点值的性质,可以考虑下降幂多项式,即考虑多项式\(F(x) = \sum\limits_{i=0}^m a_ix^{\underline i}\) ...

  2. tomcat配置外部静态资源映射路径(windows和Linux部署)

    如果你不想用ngnix配置的话,只单独使用tomcat的话可以看看这篇文章,接下来开始 使用场景 1.单机开发有时侯如果放在war下每次clean都会清理当前项目下静态文件特别折腾. 2.只有启动to ...

  3. 关于WPF中的XAML

    XAML全称extensible application markup language(可扩展性标记语言) 可扩展应用程序标记语言(XAML)是一种声明性语言.概括来说,就是为应用程序构建UI.目前 ...

  4. 记一次在 Get 请求参数为 Null 值的折腾

    先说主要原因,是因为一个 NgZerro 的 Select 组件,需要显示 placeHolder 文字,初始值为 null,然后直接绑定到查询参数中,传输到后端导致 BadRequest,参数解析失 ...

  5. springboot笔记06——使用Thymeleaf模板引擎

    前言 Springboot 推荐使用Thymeleaf做视图层.Thymeleaf支持 html 原型,然后在 html 标签里增加额外的属性来达到模板+数据的展示方式.浏览器解释 html 时会忽略 ...

  6. kubernetes第五章--创建资源的两种方式

  7. PHP 结合 Bootstrap 实现学生列表以及添加学生功能实现(继上篇登录及注册功能之后)

    本人是一位学生,正在学习当中,可能BUG众多,请见谅并指正,谢谢!!! 学生列表实现 HTML: <!DOCTYPE html> <html> <head> < ...

  8. 臀部——哑铃&杠铃

  9. 解决spring boot1.5以上版本@ConfigurationProperties提示“Spring Boot Configuration Annotation Processor not.."

    Springboot1.5以上版本,在使用 @ConfigurationProperties注解的时候会提示“Spring Boot Configuration Annotation Processo ...

  10. 22,Django常用命令

    学习Django你需要了解常见命令的使用,比如创建项目,创建应用,创建超级用户,数据表创建及更新,启动服务器等.这些命令都包含在django-admin.py和manage.py里.除此以外manag ...