【BZOJ3711】Druzyny

题面

bzoj

题解

首先我们有一个\(O(n^2)\)的\(dp\):

设\(f_i\)表示现在已经分好了\(1...i\)的组,且\(i\)作为一组的结尾的最大值,那么转移的话就是对于每个

\(\max\limits_{k=j}^i c_k\leq i-j+1\leq \min\limits_{k=j}^i d_k\)的\(f_{j-1}\)转移一下。

然后这个平方算法减下枝就艹过去了

然后想想怎么优化这个东西。

令\(pre_i\)表示在仅考虑\(d\)的限制之下,对于某一右端点\(i\)可以转移过来的左端点\(j-1\)的最靠左的位置,那么上文的\(j\)对应的就是\([j+1,i]\)这个区间,而且\(pre\)肯定也是单调不降的。

我们考虑在这样子处理\(d\)限制的基础之上解决\(c\)限制,对于一个点的转移,肯定只与一段区间内\(c\)的最大值有关,考虑最大值分治。假设对于一段区间\([l,r]\),\([l+1,r]\)的\(c\)所处的最大值位置为\(p\)(由上文所述,\(f_l\)是否能转移到\(f_r\)不取决于\(l\)的情况),然后递归处理\([l,p)\)再对于\(j\in [l,p)\),我们要求出\(f_j\)对于\(f_i,i\in [p,r]\)的贡献,最后递归\([p,r]\)。

那么问题的关键在于对于\(\forall i\in [p,r]\),\(pre_i\)不降,在复杂度正确的情况下求出\(\forall j\in [l,p)\)对其的贡献。

下面分为四种情况解决这个问题:

\(\text{Case 1:}\)

\(pre_i\leq l,i-p+1< c_p\),此时这种\(i\)会由\([l...x](x< p)\)这段前缀转移过来,第一次用线段树找到最开始的前缀最大值然后随着\(i\)增加往后面推可以\(O(1)\)转移。

这种情况只会\(O(\log n)\)查一次以及一次\(\min(p-l,r-p+1)\)遍历一次,与最大值分治复杂度一致。

\(\text{Case 2:}\)

\(pre_i\leq l,i-p+1\geq c_p\),这时候整个左区间都能转移过来,二分一下\(pre_i\leq l\)最大的\(i\)然后线段树区间修改即可。

这种情况只会\(O(\log n)\)改一次以及\(O(\log n)\)二分一次。

\(\text{Case 3:}\)

\(pre_i>l\),直接暴力查线段树区间即可。

对于\(\forall i\),分治时只会出现至多一次这样的情况,总复杂度\(O(n\log n)\)。

\(\text{Case 4:}\)

直接退出即可。

最后这题卡空间只能用线段树求区间最值,复杂度\(O(n\log n)\)在上面已经分析过了。

代码

这里是\(O(n^2)\)艹过去的

\(O(n\log n)\):

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const int INF = 1e9;
const int Mod = 1e9 + 7;
const int MAX_N = 1e6 + 5;
int N, c[MAX_N], d[MAX_N], pre[MAX_N];
struct Data { int f, g; } F[MAX_N];
Data operator + (const Data &l, const Data &r) {
if (l.f == r.f) return (Data){l.f, (l.g + r.g) % Mod};
else {
if (l.f < r.f) return (Data){r.f, r.g};
else return (Data){l.f, l.g};
}
}
#define lson (o << 1)
#define rson (o << 1 | 1)
namespace SGT1 {
int maxp[MAX_N << 2];
void build(int o, int l, int r) {
if (l == r) return (void)(maxp[o] = l);
int mid = (l + r) >> 1;
build(lson, l, mid), build(rson, mid + 1, r);
maxp[o] = c[maxp[lson]] > c[maxp[rson]] ? maxp[lson] : maxp[rson];
}
int query(int o, int l, int r, int ql, int qr) {
if (ql <= l && r <= qr) return maxp[o];
int mid = (l + r) >> 1, res = 0;
if (ql <= mid) res = query(lson, l, mid, ql, qr);
if (qr > mid) {
int p = query(rson, mid + 1, r, ql, qr);
res = c[res] > c[p] ? res : p;
}
return res;
}
}
namespace SGT2 {
Data Max[MAX_N << 2], Tag[MAX_N << 2];
void pushup(int o) { Max[o] = Max[lson] + Max[rson]; }
void puttag(int o, Data v) { Tag[o] = Tag[o] + v, Max[o] = Max[o] + v; }
void pushdown(int o) {
puttag(lson, Tag[o]);
puttag(rson, Tag[o]);
Tag[o] = (Data){-INF, 0};
}
void build(int o, int l, int r) {
Max[o] = Tag[o] = (Data){-INF, 0};
if (l == r) return ;
int mid = (l + r) >> 1;
build(lson, l, mid), build(rson, mid + 1, r);
}
void upd(int pos) {
int o = 1, l = 0, r = N;
while (l < r) {
pushdown(o);
int mid = (l + r) >> 1;
if (pos <= mid) o = lson, r = mid;
else o = rson, l = mid + 1;
}
F[pos] = Max[o] = F[pos] + Tag[o];
while (o >>= 1) pushup(o);
}
void modify(int o, int l, int r, int ql, int qr, Data v) {
if (ql <= l && r <= qr) return puttag(o, v);
pushdown(o);
int mid = (l + r) >> 1;
if (ql <= mid) modify(lson, l, mid, ql, qr, v);
if (qr > mid) modify(rson, mid + 1, r, ql, qr, v);
pushup(o);
}
Data query(int o, int l, int r, int ql, int qr) {
if (ql > qr) return (Data){-INF, 0};
if (ql <= l && r <= qr) return Max[o];
pushdown(o);
int mid = (l + r) >> 1;
Data res = (Data){-INF, 0};
if (ql <= mid) res = res + query(lson, l, mid, ql, qr);
if (qr > mid) res = res + query(rson, mid + 1, r, ql, qr);
return res;
}
}
void init() {
SGT1::build(1, 1, N);
SGT2::build(1, 0, N);
static priority_queue<int, vector<int>, greater<int> > q1, q2;
for (int i = 1; i <= N; i++) {
pre[i] = pre[i - 1];
q1.push(d[i]);
while (!q2.empty() && q1.top() == q2.top()) q1.pop(), q2.pop();
while (q1.top() < i - pre[i]) {
q2.push(d[++pre[i]]);
while (!q2.empty() && q1.top() == q2.top()) q1.pop(), q2.pop();
}
}
}
void Div(int l, int r) {
if (l == r) return SGT2::upd(l);
int p = SGT1::query(1, 1, N, l + 1, r);
Div(l, p - 1);
int pos = max(p, l + c[p]);
Data nw = SGT2::query(1, 0, N, l, pos - c[p] - 1);
while (pos <= r && pre[pos] <= l && pos - c[p] < p) {
nw = nw + F[pos - c[p]];
F[pos] = F[pos] + (Data){nw.f + 1, nw.g};
++pos;
}
if (pos <= r && pre[pos] <= l) {
int L = pos, R = r;
while (L < R) {
int M = (L + R + 1) >> 1;
if (pre[M] <= l) L = M;
else R = M - 1;
}
SGT2::modify(1, 0, N, pos, L, (Data){nw.f + 1, nw.g});
pos = L + 1;
}
while (pos <= r && pre[pos] < p) {
nw = SGT2::query(1, 0, N, pre[pos], min(pos - c[p], p - 1));
F[pos] = F[pos] + (Data){nw.f + 1, nw.g};
++pos;
}
Div(p, r);
}
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
N = gi();
for (int i = 1; i <= N; i++) c[i] = gi(), d[i] = gi();
for (int i = 1; i <= N; i++) F[i] = (Data){-INF, 0};
F[0] = (Data){0, 1};
init();
Div(0, N);
if (F[N].f <= 0) puts("NIE");
else printf("%d %d\n", F[N].f, F[N].g);
return 0;
}

【BZOJ3711】Druzyny的更多相关文章

  1. Python高手之路【六】python基础之字符串格式化

    Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式,目前两者并存.[PEP-3101] This ...

  2. 【原】谈谈对Objective-C中代理模式的误解

    [原]谈谈对Objective-C中代理模式的误解 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这篇文章主要是对代理模式和委托模式进行了对比,个人认为Objective ...

  3. 【原】FMDB源码阅读(三)

    [原]FMDB源码阅读(三) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 FMDB比较优秀的地方就在于对多线程的处理.所以这一篇主要是研究FMDB的多线程处理的实现.而 ...

  4. 【原】Android热更新开源项目Tinker源码解析系列之一:Dex热更新

    [原]Android热更新开源项目Tinker源码解析系列之一:Dex热更新 Tinker是微信的第一个开源项目,主要用于安卓应用bug的热修复和功能的迭代. Tinker github地址:http ...

  5. 【调侃】IOC前世今生

    前些天,参与了公司内部小组的一次技术交流,主要是针对<IOC与AOP>,本着学而时习之的态度及积极分享的精神,我就结合一个小故事来初浅地剖析一下我眼中的“IOC前世今生”,以方便初学者能更 ...

  6. Python高手之路【三】python基础之函数

    基本数据类型补充: set 是一个无序且不重复的元素集合 class set(object): """ set() -> new empty set object ...

  7. Python高手之路【一】初识python

    Python简介 1:Python的创始人 Python (英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种解释型.面向对象.动态数据类型的高级程序设计语言,由荷兰人Guido ...

  8. 【开源】简单4步搞定QQ登录,无需什么代码功底【无语言界限】

    说17号发超简单的教程就17号,qq核审通过后就封装了这个,现在放出来~~ 这个是我封装的一个开源项目:https://github.com/dunitian/LoTQQLogin ————————— ...

  9. 【原】FMDB源码阅读(二)

    [原]FMDB源码阅读(二) 本文转载请注明出处 -- polobymulberry-博客园 1. 前言 上一篇只是简单地过了一下FMDB一个简单例子的基本流程,并没有涉及到FMDB的所有方方面面,比 ...

随机推荐

  1. MySQL子查询结果集是否有记录

    Mark SELECT tu.id userId, tu.avatar_url avatarUrl, tu.wx_nick_name wxNickName, tu.city city, (select ...

  2. 局域网Linux机器中病毒简单处理 .aliyun.sh 挖矿病毒 ---不彻底

    1. 昨天晚上同事打电话给我说自己的服务器上面的redis无故被清空了,并且查看aof 日志有很多 wget和write指令 一想就是大事不好.局域网中病毒了.. 2. 今天早上到公司忙完一阵简单看了 ...

  3. Linux启动/停止/重启gitlab

    # Start all GitLab components sudo gitlab-ctl start # Stop all GitLab components sudo gitlab-ctl sto ...

  4. 新的部署架构之下,如何拿shell?

    和朋友聊起一个话题,服务器部署架构升级对安全的影响.从最简单的一台服务器,到应用.数据库.文件服务器分离:从本地机房服务器到云服务器产品矩阵:从虚拟化到容器化部署,一直在往更安全的方向改变. 本文试图 ...

  5. 《EOPL》 : CPS风格真是神奇

    计算的栈好像可以随便跳转了一样. Exception 的 try/catch , resume机制都可以借此实现 还可以实现 Erlang中的 spawn,线程调度器,以及基本的 Mutex 同步机制

  6. 面试官:“谈谈Spring中都用到了那些设计模式?”。

    我自己总结的Java学习的系统知识点以及面试问题,已经开源,目前已经 41k+ Star.会一直完善下去,欢迎建议和指导,同时也欢迎Star: https://github.com/Snailclim ...

  7. mysql 存储过程 函数 触发器

    mysql存储过程与函数 存储过程下载  demo mysql> delimiter // -- 这里//为修改默认分隔符: mysql> CREATE PROCEDURE simplep ...

  8. pandas基础:Series与DataFrame操作

    pandas包 # 引入包 import pandas as pd import numpy as np import matplotlib.pyplot as plt Series Series 是 ...

  9. cpio建立、还原备份档

    1. 简介 加入.解开cpio或tar备份档内的文件 与tar相似,将文件归档到硬盘或磁带等存储设备中 2. tar比较 在所处理的文件类型方面,它比tar更全面,但也更复杂 cpio比tar更为可靠 ...

  10. vmware安装后设置网络

    CentOS安装无法ping 出现Name or service not known   [root@www ~]# ping www.baidu.comping: www.baidu.com: Na ...