Pairs of Integers
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 4133   Accepted: 1062

Description

You are to find all pairs of integers such that their sum is equal to the given integer number N and the second number results from the first one by striking out one of its digits. The first integer always has at least two digits and starts with a non-zero digit. The second integer always has one digit less than the first integer and may start with a zero digit.

Input

The input file consists of a single integer N (10 <= N <= 10^9).

Output

On the first line of the output file write the total number of different pairs of integers that satisfy the problem statement. On the following lines write all those pairs. Write one pair on a line in ascending order of the first integer in the pair. Each pair must be written in the following format:

X + Y = N

Here X, Y, and N, must be replaced with the corresponding integer numbers.
There should be exactly one space on both sides of '+' and '=' characters.

Sample Input

302

Sample Output

5
251 + 51 = 302
275 + 27 = 302
276 + 26 = 302
281 + 21 = 302
301 + 01 = 302

Source

 

【题意】

给出一个数N,求X+Y = N的所有数对(X,Y),X,Y有如下要求,Y是X这个数删除一位所得到的数,X不能含有前导0,但是Y可以含有前导0.

【分析】

将数分三段,可以把X看成三部分:HSL,高位H,低位L,中间被strike掉的位S

所以Y 就是HL

X = (H*10 + S)*10^i + L, (i = 0, 1, 2 ... 最多log10(N),i代表L是几位数)

Y = H*10^i + L

X + Y = (H*11 + S) * 10^i + 2*L = N

N/(10^i) = (11H+S) + 2L/(10^i),其中2L/(10^i)只可能为0和1,再加上i的不到10种取值,共20种不到的组合
 

所以我们通过枚举L的值,来推导出H和S。

当N是奇数的时候,只可能是删除X的最后一位得到,(原因是如果L存在,则2*L%(10^i)取余

是N的后i位,因为2*L是偶数,所以N必然四偶数)。此时变成H*11 + S = N

由于S是一个数字,其值只能是0~9,故当N%11 != 10的时候是有解的。

1.N是奇数,N%11 != 10,有一个解。

2.N是偶数,还是需要考虑删除的是最后一位的情况,该情形和奇数的是一样的。

3.当枚举L的时候,又分为两种情况,2*L有进位,和2*L无进位,

即(2*L)%(10^i) = N%(10^i)

举个例子吧:

假设L是一位数,发现N的末尾是2,

则我们可以猜测的是,L = 1, 2*L = 2, 2*L无进位

然而L = 6,也是满足条件的,2*L = 12, 2*L%(10^i) = 2,即2*L向前进了1,其余数为2.

 

最后这样求解还可能存在重复的结果,所以我们map去一下重

 


【代码】

#include<map>
#include<cstdio>
#include<iomanip>
#include<iostream>
using namespace std;
int n,H,S,L,X;map<int,int>res,ri;
int main(){
cin>>n;
for(int i=0,I=1;I<=n;i++,I*=10){
if(n%I%2) continue;
H=n/I/11;
S=n/I%11;
L=n%I/2;
if(S<=9){
X=(H*10+S)*I+L;
if(H+S) res[X]=H*I+L;
ri[X]=i;
}
L=(n%I+I)/2;
S=n/I%11-1;
if(S>=0&&L){
X=(H*10+S)*I+L;
if(H+S) res[X]=H*I+L;
ri[X]=i;
}
}
cout<<res.size()<<endl;
for(map<int,int>::iterator it=res.begin();it!=res.end();it++)
cout<<it->first<<" + "<<setw(ri[it->first])<<setfill('0')<<it->second<<" = "<<n<<endl;
return 0;
}
 
 

 

POJ 1117 Pairs of Integers的更多相关文章

  1. Pairs of Integers

    Pairs of Integers You are to find all pairs of integers such that their sum is equal to the given in ...

  2. poj 2239 Selecting Courses (二分匹配)

    Selecting Courses Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8316   Accepted: 3687 ...

  3. OpenJudge/Poj 1207 The 3n + 1 problem

    1.链接地址: http://bailian.openjudge.cn/practice/1207/ http://poj.org/problem?id=1207 2.题目: 总时间限制: 1000m ...

  4. OpenJudge/Poj 1125 Stockbroker Grapevine

    1.链接地址: http://poj.org/problem?id=1125 http://bailian.openjudge.cn/practice/1125 2.题目: Stockbroker G ...

  5. POJ 2718 Smallest Difference(最小差)

     Smallest Difference(最小差) Time Limit: 1000MS    Memory Limit: 65536K Description - 题目描述 Given a numb ...

  6. poj 2284 That Nice Euler Circuit 解题报告

    That Nice Euler Circuit Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 1975   Accepted ...

  7. 【POJ】1523 SPF(割点)

    http://poj.org/problem?id=1523 太弱... too weak.. 割点我都还要看书和看题解来写..果然是写不出么.. 割点就那样求,然后分量直接这个节点有多少子树就有子树 ...

  8. POJ 1125 Stockbroker Grapevine【floyd简单应用】

    链接: http://poj.org/problem?id=1125 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  9. Poj 1125 Stockbroker Grapevine(Floyd算法求结点对的最短路径问题)

    一.Description Stockbrokers are known to overreact to rumours. You have been contracted to develop a ...

随机推荐

  1. git解决冲突(rebase版)

    当使用git rebase碰到冲突时, git rebase <Remote Branch>/<Your Branch> 信息如下: error: Failed to merg ...

  2. [linux]Error: failure: repodata/repomd.xml from fedora: [Errno 256] No more mirrors to try.

    在使用fedora17 系统的yum源的时候出现了例如以下错误: Error: failure: repodata/repomd.xml from fedora: [Errno 256] No mor ...

  3. VOIP NAT穿越之SIP信令穿越

    本文原创自 http://blog.csdn.net/voipmaker  转载注明出处. 本文是VOIP通信NAT系列专题的第三篇, 本文论述NAT对SIP协议穿越的影响.SIP协议是基于文本的,而 ...

  4. spark not contain

    参考网址 http://stackoverflow.com/questions/33608526/is-there-a-way-to-filter-a-field-not-containing-som ...

  5. 网页CSS常用中英文字体收集

    Windows的中文字体: 黑体:SimHei 宋体:SimSun 新宋体:NSimSun 仿宋:FangSong 楷体:KaiTi 仿宋_GB2312:FangSong_GB2312 楷体_GB23 ...

  6. VC6.0在win 8.1中的安装使用

    http://blog.csdn.net/liups/article/details/14646663 一.首先是win8.1的安装 本人选择的是win 8.1简体中文专业N版,文件名: cn_win ...

  7. python字符串 分片索引

    字符串是字符的有序集合,可以通过其位置来获得具体的元素.在python中,字符串中的字符是通过索引来提取的,索引从0开始. python可以取负值,表示从末尾提取,最后一个为-1,倒数第二个为-2,即 ...

  8. chm只看到目录,看不到内容解决办法

    鼠标左键->属性->解除锁定->搞定!

  9. osgearth2.8关于RectangleNodeEditor编辑点不可见的问题

    static_cast<SphereDragger*>(_llDragger)->setColor(osg::Vec4(0,0,1,0)); Alpha写成了0 应该写成 stati ...

  10. OSG3.4编译FFMPEG插件

    0.加入你要读a.mp4,那个正确的写法是osg::Image* image = osgDB::readImageFile("a.mp4.ffmpeg"); 1.在github上下 ...