MapReduce是hadoop中的一个计算框架,用来处理大数据。所谓大数据处理,即以价值为导向,对大数据加工,挖掘和优化等各种处理。

MapReduce擅长处理大数据,这是由MapReduce的设计思想决定的“分而治之”。

1)Mapper负责“分”,即把复杂的任务分解为若干个“简单的任务”来处理。“简单的任务”包含三层含义:一是数据或计算的规模相对原任务要大大缩小;而是就近计算原则,即任务会分配到存放着所需数据的节点上进行计算;三是这些小人物可以并行计算,彼此间几乎没有依赖关系。

2)Reducer负责对map节点的结果进行汇总。至少需要多少个Reducer,用户可以根据具体问题,通过在mapred-site.xml配置文件里设置参数mapred.reduce.tasks的值,缺省值为1.

MapReduce框架运转在<key,value>键值对上,也就是桌,框架把作业的输入看成是一组<key,value>键值对,通用也产生一组<key,value>键值对作为作业的输出,这两组键值对有可能是不同的。

论文:http://www.allendowney.com/ss08/handouts/dean08mapreduce.pdf

Map阶段:首先是读数据,数据来源可能是文本文件,表格,MySQL数据库。这些数据通常是成千上万的文件(叫做shards),这些shards被当做一个逻辑输入源。然后Map阶段调用用户实现的函数,叫做Mapper,独立且并行的处理每个shard。对于每个shard,Mapper返回多个键值对,这是Map阶段的输出。

Shuffle阶段:把键值对进行归类,也就是把所有相同的键的键值对归为一类。这个步骤的输出是不同的键和该键的对应的值的数据流。

Reduce阶段: 输入当然是shuffle的输出。然后Reduce阶段调用用户实现的函数,叫做Reducer,对每个不同的键和该键的对应的值的数据流进行独立、并行的处理。每个reducer遍历键对应的值,然后对值进行“置换”。这些置换通常指的的是值的聚合或者什么也不处理,然后把键值对写入数据库、表格或者文件中。

【大数据系列】MapReduce详解的更多相关文章

  1. hadoop大数据技术架构详解

    大数据的时代已经来了,信息的爆炸式增长使得越来越多的行业面临这大量数据需要存储和分析的挑战.Hadoop作为一个开源的分布式并行处理平台,以其高拓展.高效率.高可靠等优点越来越受到欢迎.这同时也带动了 ...

  2. Java+大数据开发——HDFS详解

    1. HDFS 介绍  • 什么是HDFS 首先,它是一个文件系统,用于存储文件,通过统一的命名空间--目录树来定位文件. 其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角 ...

  3. 入门大数据---Hbase协处理器详解

    一.简述 Hbase 作为列族数据库最经常被人诟病的特性包括:无法轻易建立"二级索引",难以执 行求和.计数.排序等操作.比如,在旧版本的(<0.92)Hbase 中,统计数 ...

  4. 入门大数据---Kafka生产者详解

    一.生产者发送消息的过程 首先介绍一下 Kafka 生产者发送消息的过程: Kafka 会将发送消息包装为 ProducerRecord 对象, ProducerRecord 对象包含了目标主题和要发 ...

  5. 入门大数据---Kafka消费者详解

    一.消费者和消费者群组 在 Kafka 中,消费者通常是消费者群组的一部分,多个消费者群组共同读取同一个主题时,彼此之间互不影响.Kafka 之所以要引入消费者群组这个概念是因为 Kafka 消费者经 ...

  6. 入门大数据---Hbase 过滤器详解

    一.HBase过滤器简介 Hbase 提供了种类丰富的过滤器(filter)来提高数据处理的效率,用户可以通过内置或自定义的过滤器来对数据进行过滤,所有的过滤器都在服务端生效,即谓词下推(predic ...

  7. 大数据系列4:Yarn以及MapReduce 2

    系列文章: 大数据系列:一文初识Hdfs 大数据系列2:Hdfs的读写操作 大数据谢列3:Hdfs的HA实现 通过前文,我们对Hdfs的已经有了一定的了解,本文将继续之前的内容,介绍Yarn与Yarn ...

  8. 大数据系列之分布式计算批处理引擎MapReduce实践-排序

    清明刚过,该来学习点新的知识点了. 上次说到关于MapReduce对于文本中词频的统计使用WordCount.如果还有同学不熟悉的可以参考博文大数据系列之分布式计算批处理引擎MapReduce实践. ...

  9. 大数据系列之分布式计算批处理引擎MapReduce实践

    关于MR的工作原理不做过多叙述,本文将对MapReduce的实例WordCount(单词计数程序)做实践,从而理解MapReduce的工作机制. WordCount: 1.应用场景,在大量文件中存储了 ...

  10. hadoop之mapreduce详解(进阶篇)

    上篇文章hadoop之mapreduce详解(基础篇)我们了解了mapreduce的执行过程和shuffle过程,本篇文章主要从mapreduce的组件和输入输出方面进行阐述. 一.mapreduce ...

随机推荐

  1. Linux及Windows系统配置JDK环境变量

    1.Linux系统配置方法 记住,要下载JDK-8u121-linux-x64.tar.gz,而不是JRE-8u121-linux-x64.tar.gz,JDK中含很多开发者实用工具,比如javac. ...

  2. 随手记录一下 Vue 下来框搜索 select2 封装成vue

    引入布局文件 <link href="https://cdnjs.cloudflare.com/ajax/libs/select2/4.0.3/css/select2.min.css& ...

  3. Oracle错误IMP-00010: 不是有效的导出文件, 头部验证失败 分类: Oracle 2015-07-09 13:56 20人阅读 评论(0) 收藏

    Oracle 11g的dmp备份文件导入到Oracle 10g,出现错误信息: Import: Release 10.2.0.1.0 - Production on 星期四 7月 9 13:47:04 ...

  4. pyhont备份php代码脚本

    #!/usr/bin/env python # encoding: utf-8 import time import os import sys import logging #create logg ...

  5. iOS7以上: 实现如“日历”的 NavigationBar

    第一步,隐藏导航栏底部的分割线 如何隐藏导航栏底部的分割线(shadow image/ hairline)? navigationBar.clipsToBounds = YES; //隐藏 navig ...

  6. iOS:scale image

    UIGraphicsBeginImageContextWithOptions(newSize, NO, 0.0); [image drawInRect:CGRectMake(, , newSize.w ...

  7. [转]MBProgressHUD 源码分析

    源码来源: https://github.com/jdg/MBProgressHUD 版本:0.9.1 MBProgressHUD是一个显示HUD窗口的第三方类库,用于在执行一些后台任务时,在程序中显 ...

  8. Backlight当前行背景高亮显示

    下载地址:https://github.com/limejelly/Backlight-for-XCode PS:Xcode 8.0 默认支持了 跟VVDocumenter规范注释生成器的安装方式一样 ...

  9. VC6.0在win 8.1中的安装使用

    http://blog.csdn.net/liups/article/details/14646663 一.首先是win8.1的安装 本人选择的是win 8.1简体中文专业N版,文件名: cn_win ...

  10. c++String类的运算符重载---21

    原创博文,转载请标明出处--周学伟http://www.cnblogs.com/zxouxuewei/  一,创建测试程序包 测试代码如下: /* Date: 2017-5-4 * Descripti ...