numpy中的np.random.mtrand.RandomState
1 RandomState 的应用场景概述
在训练神经网络时,苦于没有数据,此时numpy为我们提供了 “生产” 数据集的一种方式。
例如在搭建神经网络(一)中的 4.3 准备数据集 章节中就是采用np.random.mtrand.RandomState “生产” 数据的。
常用的方式如下
import numpy as np
# 设置seed值,生成ndarray对象
SEED = 23455
# 基于seed产生随机数
rdm = np.random.mtrand.RandomState(SEED)
# rand函数产生随机数,返回32行2列矩阵
# 32行代表32组数据,2代表输入数据的2个特征
X = rdm.rand(32, 2)
# 为每组数据制备标签
# 若(体积+重量) ≥ 1,则 Y 赋值 0
# 若(体积+重量) < 1,则 Y 赋值 1
# Y 值为输入数据集的标签(正确答案),这里记为 Y_
Y_ = [[int(x0 + x1 < 1)] for (x0, x1) in X]
# 在神经网络中,print函数是可不写的
# 此处仅为了便于观察过程数据
print("X:\n",X)
print("Y_:\n",Y_)
2 RandomState 对象介绍
为了更为清晰地看RandomState,使用help函数打印出RandomState信息。
无论是从命名规则和帮助文档可确定RandomSate是一个类。

import numpy as np rdm = np.random.mtrand.RandomState() print(rdm)
运行
<mtrand.RandomState object at 0x00000166B6599BD0>
2.1 RandomState用途
RandomState作为Mersenne Twister伪随机数发生器的容器。
RandomState类中有许多方法,用于从各种概率分布中生成随机数。类中的每个方法都有特定于分布的参数,但所有方法中都包含有一个 'size' 参数。
- None - 生成并返回单个值
- 整数integer - 生成并返回一个生成值的1-D数组
- 元组tuple- 生成并返回一个具有该形状shape的数组。
类中的方法及其方法中的参数详见 numpy.random.mtrand.RandomState
备注:
类RandomState调用的固定的种子和系列( A fixed seed and a fixed series)等相同的参数将会产生相同的结果,也可理解为类RandomState中使用相同integer或array_like参数等固定种子将会产生相同的结果。
Python stdlib模块 “random” 还包含一个Mersenne Twister伪随机数生成器,其中有许多方法类似于`RandomState`中可用的方法。 除了NumPy感知之外,`RandomState`的优点是它提供了更多的概率分布可供选择。
2.2 类的参数

可选参数为随机种子seed(用于初始化initialize伪随机数pseudo-random number生成器igenerator),可以是0~2**32-1间的任一整数integer,或array_like(array or other sequence)的整数integers。或默认值None。
- None - 生成并返回单个值,此时RandomState将尝试从‘/dev/urandom’或windows analogue读取数据(如果可用),否则将从时钟clock读取种子seed。
- int - 生成并返回一个生成值的一维数组
- array_like - 生成并返回一个具有该形状shape的数组。
2.3 RandomState的引用方法
# 两个语句等价 # 可认为是简写版 rdm = np.random.RandomState(SEED) # 在多场合可看到的版本 rdm = np.random.mtrand.RandomState(SEED)
在官方文档中(numpy.random.mtrand.RandomState)看到的结果。

2.4 RandomState的结果值
由于RandomState是类,所以打印不出具体结果,是对象地址
<mtrand.RandomState object at 0x00000170BB6A9AF8>
当使用RandomState类中的方法时,就可以print出具体值。但不同的方法function会得到不同的结果。
rand()方法就可以得到0~1的随机值。
import tensorflow as tf import numpy as np SEED = 23455 rdm = np.random.mtrand.RandomState(SEED) print(rdm) a = rdm.rand(32,2) print(a)
运行
<mtrand.RandomState object at 0x00000170BB6A9AF8> [[0.83494319 0.11482951] [0.66899751 0.46594987] [0.60181666 0.58838408] [0.31836656 0.20502072] [0.87043944 0.02679395] [0.41539811 0.43938369] [0.68635684 0.24833404] [0.97315228 0.68541849] [0.03081617 0.89479913] [0.24665715 0.28584862] [0.31375667 0.47718349] [0.56689254 0.77079148] [0.7321604 0.35828963] [0.15724842 0.94294584] [0.34933722 0.84634483] [0.50304053 0.81299619] [0.23869886 0.9895604 ] [0.4636501 0.32531094] [0.36510487 0.97365522] [0.73350238 0.83833013] [0.61810158 0.12580353] [0.59274817 0.18779828] [0.87150299 0.34679501] [0.25883219 0.50002932] [0.75690948 0.83429824] [0.29316649 0.05646578] [0.10409134 0.88235166] [0.06727785 0.57784761] [0.38492705 0.48384792] [0.69234428 0.19687348] [0.42783492 0.73416985] [0.09696069 0.04883936]]
numpy中的np.random.mtrand.RandomState的更多相关文章
- numpy中的np.round()取整的功能和注意
numpy中的np.round()取整的功能和注意 功能 np.round() 是对浮点数取整的一个函数,一般的形式为 np.round(a, b),其中a为待取整的浮点数,b为保留的小数点的位数 注 ...
- [转]numpy中的np.max 与 np.maximum区别
转自:https://blog.csdn.net/lanchunhui/article/details/52700895
- numpy中np.random.seed()的详细用法
在进行机器学习和深度学习中,我们会经常用到np.random.seed(),利用随机数种子,使得每次生成的随机数相同. numpy.randn.randn(d0,d1,...,dn) randn函数根 ...
- Numpy中np.random.randn与np.random.rand的区别,及np.mgrid与np.ogrid的理解
np.random.randn是基于标准正态分布产生的随机数,np.random.rand是基于均匀分布产生的随机数,其值在[0,1). np.mgrid 与np.ogrid的理解及区别:np.mgr ...
- 对抗生成网络-图像卷积-mnist数据生成(代码) 1.tf.layers.conv2d(卷积操作) 2.tf.layers.conv2d_transpose(反卷积操作) 3.tf.layers.batch_normalize(归一化操作) 4.tf.maximum(用于lrelu) 5.tf.train_variable(训练中所有参数) 6.np.random.uniform(生成正态数据
1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的 ...
- numpy中random的使用
import numpy as np a=np.random.random()#用于生成一个0到1的随机浮点数: 0 <= n < 1.0print(a)0.772000903322952 ...
- np.random.random()函数 参数用法以及numpy.random系列函数大全
原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/9751471.html 1.np.random.random()函数参数 np.random.r ...
- 【转】np.random.random()函数 参数用法以及numpy.random系列函数大全
转自:https://www.cnblogs.com/DOMLX/p/9751471.html 1.np.random.random()函数参数 np.random.random((1000, 20) ...
- numpy中np.c_和np.r_
np.r_:按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等,类似于pandas中的concat() np.c_:按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等,类似于pandas中的mer ...
随机推荐
- vi入门到精通
VI是在Linux命令行下常用的文本编辑工具,在服务配置管理过程中经常用到:vi的常见的使用指南,互联网上随处可见,但仅能满足初学者对文档编辑的需求.这里就我自己在使用过程中通常用到的一些技巧操作方法 ...
- 多模块Maven项目如何使用javadoc插件生成文档
版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] 需求 最近要对一个项目结构如下的Maven项目生成JavaDoc文档. Project ...
- spring boot与spring mvc的区别是什么?
Spring 框架就像一个家族,有众多衍生产品例如 boot.security.jpa等等.但他们的基础都是Spring 的 ioc和 aop ioc 提供了依赖注入的容器 aop ,解决了面向横切面 ...
- Oracle 之 保留两位小数
项目需要使用百分率,保留2位小数,只用 round 和 trunc 函数都可以实现(round(_data,2) ),只是格式不是很工整,对格式要求不严谨的情况下使用 round 即可. 以下是比较方 ...
- 使用Json.Net解决MVC中各种json操作
最近收集了几篇文章,用于替换MVC中各种json操作,微软mvc当然用自家的序列化,速度慢不说,还容易出问题,自定义性也太差,比如得特意解决循环引用的问题,比如datetime的序列化格式,比如性能. ...
- angularjs component
Component https://docs.angularjs.org/guide/component component本质上就是directive. This is a shorthand fo ...
- ADHOC Report 配置
ADHOC Report ADHOC Report - 临时的report,随时可以去系统中按照你选择的条件打出你想看的report Add ADHOC Report --AddReport use ...
- MySQL源代码解读
第一步: 下载bison-2.4.1-setup.exe链接地址 第二步: 下载cmake-2.8.6-win32-x86.exe链接地址 第三步: 下载MySQL链接地址 G:\Mlearn\mys ...
- Android学习笔记六:六大布局
六大界面布局方式包括: 线性布局(LinearLayout).帧布局(FrameLayout).表格布局(TableLayout).相对布局(RelativeLayout).绝对布局(Absolute ...
- merge-two-sorted-lists合并链表
Merge two sorted linked lists and return it as a new list. The new list should be made by splicing t ...