numpy中的np.random.mtrand.RandomState
1 RandomState 的应用场景概述
在训练神经网络时,苦于没有数据,此时numpy为我们提供了 “生产” 数据集的一种方式。
例如在搭建神经网络(一)中的 4.3 准备数据集 章节中就是采用np.random.mtrand.RandomState “生产” 数据的。
常用的方式如下
import numpy as np
# 设置seed值,生成ndarray对象
SEED = 23455
# 基于seed产生随机数
rdm = np.random.mtrand.RandomState(SEED)
# rand函数产生随机数,返回32行2列矩阵
# 32行代表32组数据,2代表输入数据的2个特征
X = rdm.rand(32, 2)
# 为每组数据制备标签
# 若(体积+重量) ≥ 1,则 Y 赋值 0
# 若(体积+重量) < 1,则 Y 赋值 1
# Y 值为输入数据集的标签(正确答案),这里记为 Y_
Y_ = [[int(x0 + x1 < 1)] for (x0, x1) in X]
# 在神经网络中,print函数是可不写的
# 此处仅为了便于观察过程数据
print("X:\n",X)
print("Y_:\n",Y_)
2 RandomState 对象介绍
为了更为清晰地看RandomState,使用help函数打印出RandomState信息。
无论是从命名规则和帮助文档可确定RandomSate是一个类。

import numpy as np rdm = np.random.mtrand.RandomState() print(rdm)
运行
<mtrand.RandomState object at 0x00000166B6599BD0>
2.1 RandomState用途
RandomState作为Mersenne Twister伪随机数发生器的容器。
RandomState类中有许多方法,用于从各种概率分布中生成随机数。类中的每个方法都有特定于分布的参数,但所有方法中都包含有一个 'size' 参数。
- None - 生成并返回单个值
- 整数integer - 生成并返回一个生成值的1-D数组
- 元组tuple- 生成并返回一个具有该形状shape的数组。
类中的方法及其方法中的参数详见 numpy.random.mtrand.RandomState
备注:
类RandomState调用的固定的种子和系列( A fixed seed and a fixed series)等相同的参数将会产生相同的结果,也可理解为类RandomState中使用相同integer或array_like参数等固定种子将会产生相同的结果。
Python stdlib模块 “random” 还包含一个Mersenne Twister伪随机数生成器,其中有许多方法类似于`RandomState`中可用的方法。 除了NumPy感知之外,`RandomState`的优点是它提供了更多的概率分布可供选择。
2.2 类的参数

可选参数为随机种子seed(用于初始化initialize伪随机数pseudo-random number生成器igenerator),可以是0~2**32-1间的任一整数integer,或array_like(array or other sequence)的整数integers。或默认值None。
- None - 生成并返回单个值,此时RandomState将尝试从‘/dev/urandom’或windows analogue读取数据(如果可用),否则将从时钟clock读取种子seed。
- int - 生成并返回一个生成值的一维数组
- array_like - 生成并返回一个具有该形状shape的数组。
2.3 RandomState的引用方法
# 两个语句等价 # 可认为是简写版 rdm = np.random.RandomState(SEED) # 在多场合可看到的版本 rdm = np.random.mtrand.RandomState(SEED)
在官方文档中(numpy.random.mtrand.RandomState)看到的结果。

2.4 RandomState的结果值
由于RandomState是类,所以打印不出具体结果,是对象地址
<mtrand.RandomState object at 0x00000170BB6A9AF8>
当使用RandomState类中的方法时,就可以print出具体值。但不同的方法function会得到不同的结果。
rand()方法就可以得到0~1的随机值。
import tensorflow as tf import numpy as np SEED = 23455 rdm = np.random.mtrand.RandomState(SEED) print(rdm) a = rdm.rand(32,2) print(a)
运行
<mtrand.RandomState object at 0x00000170BB6A9AF8> [[0.83494319 0.11482951] [0.66899751 0.46594987] [0.60181666 0.58838408] [0.31836656 0.20502072] [0.87043944 0.02679395] [0.41539811 0.43938369] [0.68635684 0.24833404] [0.97315228 0.68541849] [0.03081617 0.89479913] [0.24665715 0.28584862] [0.31375667 0.47718349] [0.56689254 0.77079148] [0.7321604 0.35828963] [0.15724842 0.94294584] [0.34933722 0.84634483] [0.50304053 0.81299619] [0.23869886 0.9895604 ] [0.4636501 0.32531094] [0.36510487 0.97365522] [0.73350238 0.83833013] [0.61810158 0.12580353] [0.59274817 0.18779828] [0.87150299 0.34679501] [0.25883219 0.50002932] [0.75690948 0.83429824] [0.29316649 0.05646578] [0.10409134 0.88235166] [0.06727785 0.57784761] [0.38492705 0.48384792] [0.69234428 0.19687348] [0.42783492 0.73416985] [0.09696069 0.04883936]]
numpy中的np.random.mtrand.RandomState的更多相关文章
- numpy中的np.round()取整的功能和注意
numpy中的np.round()取整的功能和注意 功能 np.round() 是对浮点数取整的一个函数,一般的形式为 np.round(a, b),其中a为待取整的浮点数,b为保留的小数点的位数 注 ...
- [转]numpy中的np.max 与 np.maximum区别
转自:https://blog.csdn.net/lanchunhui/article/details/52700895
- numpy中np.random.seed()的详细用法
在进行机器学习和深度学习中,我们会经常用到np.random.seed(),利用随机数种子,使得每次生成的随机数相同. numpy.randn.randn(d0,d1,...,dn) randn函数根 ...
- Numpy中np.random.randn与np.random.rand的区别,及np.mgrid与np.ogrid的理解
np.random.randn是基于标准正态分布产生的随机数,np.random.rand是基于均匀分布产生的随机数,其值在[0,1). np.mgrid 与np.ogrid的理解及区别:np.mgr ...
- 对抗生成网络-图像卷积-mnist数据生成(代码) 1.tf.layers.conv2d(卷积操作) 2.tf.layers.conv2d_transpose(反卷积操作) 3.tf.layers.batch_normalize(归一化操作) 4.tf.maximum(用于lrelu) 5.tf.train_variable(训练中所有参数) 6.np.random.uniform(生成正态数据
1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的 ...
- numpy中random的使用
import numpy as np a=np.random.random()#用于生成一个0到1的随机浮点数: 0 <= n < 1.0print(a)0.772000903322952 ...
- np.random.random()函数 参数用法以及numpy.random系列函数大全
原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/9751471.html 1.np.random.random()函数参数 np.random.r ...
- 【转】np.random.random()函数 参数用法以及numpy.random系列函数大全
转自:https://www.cnblogs.com/DOMLX/p/9751471.html 1.np.random.random()函数参数 np.random.random((1000, 20) ...
- numpy中np.c_和np.r_
np.r_:按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等,类似于pandas中的concat() np.c_:按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等,类似于pandas中的mer ...
随机推荐
- 解压版mysql的配置与使用
1.在环境变量path中添加mysql的bin目录路径,例如 D:\Program Files\MySQL\mysql\bin 2.修改mysql目录下的my-default.ini文件 # 设置my ...
- hdu 5411 CRB and Puzzle (矩阵高速幂优化dp)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5411 题意:按题目转化的意思是,给定N和M,再给出一些边(u,v)表示u和v是连通的,问走0,1,2... ...
- linux install nodejs
下载/安装python yum install -y bzip2* #nodejs 0.8.5需要,请安装python前,先安装此模块. wget http://www.python.org/ft ...
- C#.NET常见问题(FAQ)-如何让控件或者窗体本身全屏
初始化的时候保存控件的原始尺寸,然后通过Dock属性调节 注意如果你的控件是放在容器中的,那么对应设置的也要是容器的Dock属性 全屏的效果如下图所示 更多教学视频和资料下载,欢迎关注以下 ...
- sql按分时段统计
),,) ctime, ) num FROM [eschool_1].[dbo].kg_Kaoqin ),,) ),,)
- 安装vmware-tools出错:Execution aborted!!!
环境:VMware10+RedHat5(安装时选择了虚拟化组件). 安装vmware-tools过程中出现如下所示错误: This configuration program is to be exe ...
- MAC LINUX 安装PYQT(事例)
MAC安装 1.安装命令:brew install pyqt Warning: Your Xcode () is outdated Please install Xcode 5.0. Warning: ...
- python知识合集
python安装包管理 http://www.cnblogs.com/wilber2013/p/4769467.html python pip安装源管理:pypi官网的源不太好,网速慢,容易造成包下 ...
- 算法笔记_200:第三届蓝桥杯软件类决赛真题(C语言本科)
目录 1 星期几 2 数据压缩 3 拼音字母 4 DNA比对 5 方块填数 前言:以下代码部分仅供参考,若有不当之处,还望路过同学指出哦~ 1 星期几 1949年的国庆节(10月1日)是星期六. ...
- 安装python-ldap fatal error: lber.h: No such file or directory
sudo apt-get install libsasl2-dev python-dev libldap2-dev libssl-dev sudo apt-get install -y python- ...