首先从中这里下载下代码:

https://github.com/ageitgey/face_recognition#face-recognition

然后安装所以必须的组件,我用的Python3.5

进入example里面跑他的demo,主要就是掉了dlib的接口比如:

    face_locations = face_recognition.face_locations(rgb_frame)
face_encodings = face_recognition.face_encodings(rgb_frame, face_locations)
face_landmarks_list = face_recognition.face_landmarks(rgb_frame)

引入了OpenCV稍微改了下显示,camera实时跟踪人脸的特征点,速度奇慢,而且还不准。

代码很简单:

import face_recognition
import cv2 # This is a super simple (but slow) example of running face recognition on live video from your webcam.
# There's a second example that's a little more complicated but runs faster. # PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
# specific demo. If you have trouble installing it, try any of the other demos that don't require it instead. # Get a reference to webcam # (the default one)
video_capture = cv2.VideoCapture() # Load a sample picture and learn how to recognize it.
obama_image = face_recognition.load_image_file("obama.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[] # Load a second sample picture and learn how to recognize it.
biden_image = face_recognition.load_image_file("biden.jpg")
biden_face_encoding = face_recognition.face_encodings(biden_image)[] # Create arrays of known face encodings and their names
known_face_encodings = [
obama_face_encoding,
biden_face_encoding
]
known_face_names = [
"Barack Obama",
"Joe Biden"
] while True:
# Grab a single frame of video
ret, frame = video_capture.read() # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_frame = frame[:, :, ::-] # Find all the faces and face enqcodings in the frame of video
# face_locations = face_recognition.face_locations(rgb_frame)
# face_encodings = face_recognition.face_encodings(rgb_frame, face_locations)
face_landmarks_list = face_recognition.face_landmarks(rgb_frame) # Loop through each face in this frame of video
# for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
# # See if the face is a match for the known face(s)
# matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
#
# name = "Unknown" # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index] # # Draw a box around the face
# cv2.rectangle(frame, (left, top), (right, bottom), (, , ), )
#
# # Draw a label with a name below the face
# cv2.rectangle(frame, (left, bottom - ), (right, bottom), (, , ), cv2.FILLED)
# font = cv2.FONT_HERSHEY_DUPLEX
# cv2.putText(frame, name, (left + , bottom - ), font, 1.0, (, , ), ) for face_landmarks in face_landmarks_list: # Print the location of each facial feature in this image
facial_features = [
'chin',
'left_eyebrow',
'right_eyebrow',
'nose_bridge',
'nose_tip',
'left_eye',
'right_eye',
'top_lip',
'bottom_lip'
] for facial_feature in facial_features:
for point in face_landmarks[facial_feature]:
cv2.circle(frame, point, , (, , )) # Display the resulting image
cv2.imshow('Video', frame) # Hit 'q' on the keyboard to quit!
if cv2.waitKey() & 0xFF == ord('q'):
break # Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()

dlib实现人脸landmark点检测以及一些其他的应用的更多相关文章

  1. Python 3 利用 Dlib 实现人脸检测和剪切

    0. 引言 利用 Python 开发,借助 Dlib 库进行人脸检测 / face detection 和剪切:   1. crop_faces_show.py : 将检测到的人脸剪切下来,依次排序平 ...

  2. 基于CNN的人脸相似度检测

    人脸相似度检测主要是检测两张图片中人脸的相似度,从而判断这两张图片的对象是不是一个人. 在上一篇文章中,使用CNN提取人脸特征,然后利用提取的特征进行分类.而在人脸相似度检测的工作中,我们也可以利用卷 ...

  3. OpenCV4.1.0实践(2) - Dlib+OpenCV人脸特征检测

    待更! 参考: python dlib opencv 人脸68点特征检测

  4. dlib python 人脸检测与关键点标记

    http://blog.csdn.net/sunmc1204953974/article/details/49976045 人脸检测 #coding=utf-8 # -*- coding: utf-8 ...

  5. 人脸检测学习笔记(数据集-DLIB人脸检测原理-DLIB&OpenCV人脸检测方法及对比)

    1.Easily Create High Quality Object Detectors with Deep Learning 2016/10/11 http://blog.dlib.net/201 ...

  6. 使用dlib基于CNN(卷积神经网络)的人脸检测器来检测人脸

    基于机器学习CNN方法来检测人脸比之前介绍的效率要慢很多 需要先下载一个训练好的模型数据: 地址点击下载 // dlib_cnn_facedetect.cpp: 定义控制台应用程序的入口点. // # ...

  7. face landmark 人脸特征点检测

    1.ASM&AAM算法 ASM(Active Shape Model)算法介绍:http://blog.csdn.net/carson2005/article/details/8194317 ...

  8. 写个神经网络,让她认得我`(๑•ᴗ•๑)(Tensorflow,opencv,dlib,cnn,人脸识别)

    训练一个神经网络 能让她认得我 阅读原文 这段时间正在学习tensorflow的卷积神经网络部分,为了对卷积神经网络能够有一个更深的了解,自己动手实现一个例程是比较好的方式,所以就选了一个这样比较有点 ...

  9. Python 3 利用 Dlib 实现人脸 68个 特征点的标定

    0. 引言 利用 Dlib 官方训练好的模型 “shape_predictor_68_face_landmarks.dat” 进行 68 个点标定: 利用 OpenCv 进行图像化处理,在人脸上画出 ...

随机推荐

  1. php开启与关闭错误提示

    windows系统开关php错误提示 如果不具备修改php.ini的权限,可以将如下代码加入php文件中: 代码如下 复制代码 ini_set("display_errors", ...

  2. stm8时钟

    为使系统快速启动,复位后时钟控制器自动使用HSI的8分频(HSI/8)做为主时钟(2M).其原因为HSI的稳定时间短,而8分频可保证系统在较差的VDD条件下安全启动.一旦主时钟源稳定,用户程序可将主时 ...

  3. flock防止crontab脚本周期内未执行完重复执行(转)

    如果某脚本要运行30分钟,可以在Crontab里把脚本间隔设为至少一小时来避免冲突.而比较糟的情况是可能该脚本在执行周期内没有完成,接着第二个脚本又开始运行了.如何确保只有一个脚本实例运行呢?一个好用 ...

  4. Elastalert 监控

    1.logstash 做监控的优劣 适合match-then-alert 的方式 logstash-filter-metric logstash-input-http_poller 无状态.进程间数据 ...

  5. macbook中vagrant升级新版本

    macbook由于缺少卸载机制,有时候不知道该如何升级软件. vagant的升级到时简单,经测试,只需直接官网下载新软件,安装即可. 旧版本不用管,新的会直接替换.

  6. [Leet Code]Path Sum

    很简单一道题,搞错了N次,记录一下. public class Solution { private int currSum = 0; public boolean hasPathSum(TreeNo ...

  7. 【Unity】11.7 布料

    分类:Unity.C#.VS2015 创建日期:2016-05-02 一.简介 Unity提供了两种布料组件:交互布料(Interactive Cloth).蒙皮布料(Skinned Cloth).为 ...

  8. LeetCode263——Ugly Number

    Write a program to check whether a given number is an ugly number. Ugly numbers are positive numbers ...

  9. 构造函数 (C++)

    构造函数是一种可初始化其类的实例的成员函数. 构造函数具有与类相同的名称,没有返回值. 构造函数可以具有任意数量的参数,类可以具有任意数量的重载构造函数. 构造函数可以具有任何可访问性(公共.受保护或 ...

  10. 如何使用KVM 虚拟机安装RHEL7系统

    KVM(基于内核的虚拟机)是标准的RHEL内核中内置的完整的虚拟化解决方案.它可以运行多款未经修改的Windows和Linux虚拟客户机操作系统.RHEL中的KVM系统管理程序通过libvirtAPI ...