dlib实现人脸landmark点检测以及一些其他的应用
首先从中这里下载下代码:
https://github.com/ageitgey/face_recognition#face-recognition
然后安装所以必须的组件,我用的Python3.5
进入example里面跑他的demo,主要就是掉了dlib的接口比如:
face_locations = face_recognition.face_locations(rgb_frame)
face_encodings = face_recognition.face_encodings(rgb_frame, face_locations)
face_landmarks_list = face_recognition.face_landmarks(rgb_frame)
引入了OpenCV稍微改了下显示,camera实时跟踪人脸的特征点,速度奇慢,而且还不准。
代码很简单:
import face_recognition
import cv2 # This is a super simple (but slow) example of running face recognition on live video from your webcam.
# There's a second example that's a little more complicated but runs faster. # PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
# specific demo. If you have trouble installing it, try any of the other demos that don't require it instead. # Get a reference to webcam # (the default one)
video_capture = cv2.VideoCapture() # Load a sample picture and learn how to recognize it.
obama_image = face_recognition.load_image_file("obama.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[] # Load a second sample picture and learn how to recognize it.
biden_image = face_recognition.load_image_file("biden.jpg")
biden_face_encoding = face_recognition.face_encodings(biden_image)[] # Create arrays of known face encodings and their names
known_face_encodings = [
obama_face_encoding,
biden_face_encoding
]
known_face_names = [
"Barack Obama",
"Joe Biden"
] while True:
# Grab a single frame of video
ret, frame = video_capture.read() # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_frame = frame[:, :, ::-] # Find all the faces and face enqcodings in the frame of video
# face_locations = face_recognition.face_locations(rgb_frame)
# face_encodings = face_recognition.face_encodings(rgb_frame, face_locations)
face_landmarks_list = face_recognition.face_landmarks(rgb_frame) # Loop through each face in this frame of video
# for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
# # See if the face is a match for the known face(s)
# matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
#
# name = "Unknown" # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index] # # Draw a box around the face
# cv2.rectangle(frame, (left, top), (right, bottom), (, , ), )
#
# # Draw a label with a name below the face
# cv2.rectangle(frame, (left, bottom - ), (right, bottom), (, , ), cv2.FILLED)
# font = cv2.FONT_HERSHEY_DUPLEX
# cv2.putText(frame, name, (left + , bottom - ), font, 1.0, (, , ), ) for face_landmarks in face_landmarks_list: # Print the location of each facial feature in this image
facial_features = [
'chin',
'left_eyebrow',
'right_eyebrow',
'nose_bridge',
'nose_tip',
'left_eye',
'right_eye',
'top_lip',
'bottom_lip'
] for facial_feature in facial_features:
for point in face_landmarks[facial_feature]:
cv2.circle(frame, point, , (, , )) # Display the resulting image
cv2.imshow('Video', frame) # Hit 'q' on the keyboard to quit!
if cv2.waitKey() & 0xFF == ord('q'):
break # Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()
dlib实现人脸landmark点检测以及一些其他的应用的更多相关文章
- Python 3 利用 Dlib 实现人脸检测和剪切
0. 引言 利用 Python 开发,借助 Dlib 库进行人脸检测 / face detection 和剪切: 1. crop_faces_show.py : 将检测到的人脸剪切下来,依次排序平 ...
- 基于CNN的人脸相似度检测
人脸相似度检测主要是检测两张图片中人脸的相似度,从而判断这两张图片的对象是不是一个人. 在上一篇文章中,使用CNN提取人脸特征,然后利用提取的特征进行分类.而在人脸相似度检测的工作中,我们也可以利用卷 ...
- OpenCV4.1.0实践(2) - Dlib+OpenCV人脸特征检测
待更! 参考: python dlib opencv 人脸68点特征检测
- dlib python 人脸检测与关键点标记
http://blog.csdn.net/sunmc1204953974/article/details/49976045 人脸检测 #coding=utf-8 # -*- coding: utf-8 ...
- 人脸检测学习笔记(数据集-DLIB人脸检测原理-DLIB&OpenCV人脸检测方法及对比)
1.Easily Create High Quality Object Detectors with Deep Learning 2016/10/11 http://blog.dlib.net/201 ...
- 使用dlib基于CNN(卷积神经网络)的人脸检测器来检测人脸
基于机器学习CNN方法来检测人脸比之前介绍的效率要慢很多 需要先下载一个训练好的模型数据: 地址点击下载 // dlib_cnn_facedetect.cpp: 定义控制台应用程序的入口点. // # ...
- face landmark 人脸特征点检测
1.ASM&AAM算法 ASM(Active Shape Model)算法介绍:http://blog.csdn.net/carson2005/article/details/8194317 ...
- 写个神经网络,让她认得我`(๑•ᴗ•๑)(Tensorflow,opencv,dlib,cnn,人脸识别)
训练一个神经网络 能让她认得我 阅读原文 这段时间正在学习tensorflow的卷积神经网络部分,为了对卷积神经网络能够有一个更深的了解,自己动手实现一个例程是比较好的方式,所以就选了一个这样比较有点 ...
- Python 3 利用 Dlib 实现人脸 68个 特征点的标定
0. 引言 利用 Dlib 官方训练好的模型 “shape_predictor_68_face_landmarks.dat” 进行 68 个点标定: 利用 OpenCv 进行图像化处理,在人脸上画出 ...
随机推荐
- Java Nashorn--Part 5
Nashorn 的高级应用 Nashorn 是一个复杂的编程环境,它被设计为一个强大的平台,用于部署应用程序,并与Java具有极大的互操作性. 让我们来看一些更高级的用于 JavaScript 到 J ...
- Python MySQLdb insert(插入) 封装
def insert_data(dbName,data_dict): try: data_values = "(" + "%s," * (len(data_di ...
- glide 镜像
运行glide install 失败 国内墙的原因, 某些网站上不去 [ERROR]Update failed for golang.org/x/crypto: Cannot detect VCS ...
- Centos 7搭建Gitlab服务器超详细(转)
一. 安装并配置必要的依赖关系 在CentOS系统上安装所需的依赖:ssh,防火墙,postfix(用于邮件通知) ,wget,以下这些命令也会打开系统防火墙中的HTTP和SSH端口访问. 1.安装s ...
- 路径不对 导致FileNotFoundError: [WinError 2] 系统找不到指定的文件, 问题解决办法
执行python + selenium 代码 from selenium import webdriver driver = webdriver.Chrome("D:\AutoConf\bi ...
- p标签不折行的问题
问题描述: 一个固定宽度的div里面包了一个p元素,由于p元素中的文字比较长并且没有换行,最终看到的效果就是p中的 文字“跑”了出来. 问题复现: <div style="width: ...
- update document in mongodb using java -摘自网络
update document in mongodb using java: Mongodb driver provides functionality to update document in m ...
- Android 常用算法
排序算法 简单排序算法 冒泡排序 两两比较相邻记录的关键字,如果反序则交换,直到没有反序的记录为止 直接插入排序 通过 n-i 次关键字间的比较,从 n-i+1 个记录中选出关键字最小的记录,并和第 ...
- [svc]Linux vmstat命令实战详解
vmstat输出 注:是cpu 内存 磁盘 虚拟内存交换情况 io读写情况 vmstat命令是最常见的Linux/Unix监控工具,可以展现给定时间间隔的服务器的状态值,包括服务器的CPU使用率,内存 ...
- GMap.net控件学习记录
主要参考网址 http://www.cnblogs.com/luxiaoxun/p/3802559.html http://www.cnblogs.com/luxiaoxun/p/3463250.ht ...