思路:

设dp[i]为覆盖i所用的最小数量,那么dp[i] = min(dp[k] + 1),其中i - 2b <= k <= i -2a,所以可以手动开一个单调递增的队列,队首元素就是k。

初始状态为dp[0] = 0,注意喷水覆盖的范围是偶数且不重叠,所以插入队列的必是偶数。有牛的地方不能作为边界,所以这些地方都要排除,可以用vis标记或者其他方法。

代码:

#include<map>
#include<ctime>
#include<cmath>
#include<stack>
#include<queue>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
const int N = 1000000+5;
const int INF = 0x3f3f3f3f;
using namespace std;
int dp[N],q[N]; //单调递增队列:队首是当前dp最小的
int main() {
int n,l,a,b,L,R;
scanf("%d%d%d%d",&n,&l,&a,&b);
memset(dp,INF,sizeof(dp));
for(int i = 0;i < n;i++){
scanf("%d%d",&L,&R);
for(int j = L + 1;j <= R - 1;j++){
dp[j] = INF + 1;
}
}
int head = 0,tail = 0;
dp[0] = 0;
for(int i = 2*a;i <= l;i+= 2){
while(head < tail && dp[q[tail - 1]] >= dp[i - 2*a]) tail--;
q[tail++] = i - 2*a;
while(head < tail && q[head] < i - 2*b) head++; //i - 2*b <= j <= i - 2*a
if(dp[i] <= INF) dp[i] = dp[q[head]] + 1;
}
if(dp[l] < INF) printf("%d\n",dp[l]);
else printf("-1\n");
return 0;
}

POJ 2373 Dividing the Path (单调队列优化DP)题解的更多相关文章

  1. POJ 2373 Dividing the Path(DP + 单调队列)

    POJ 2373 Dividing the Path 描述 农夫约翰的牛发现,在他的田里沿着山脊生长的三叶草是特别好的.为了给三叶草浇水,农夫约翰在山脊上安装了喷水器. 为了使安装更容易,每个喷头必须 ...

  2. POJ 1821 Fence(单调队列优化DP)

    题解 以前做过很多单调队列优化DP的题. 这个题有一点不同是对于有的状态可以转移,有的状态不能转移. 然后一堆边界和注意点.导致写起来就很难受. 然后状态也比较难定义. dp[i][j]代表前i个人涂 ...

  3. 算法笔记--单调队列优化dp

    单调队列:队列中元素单调递增或递减,可以用双端队列实现(deque),队列的前面和后面都可以入队出队. 单调队列优化dp: 问题引入: dp[i] = min( a[j] ) ,i-m < j ...

  4. 单调队列优化DP——习题收集

    前言 感觉可以用单调队列优化dp的模型还是挺活的,开个随笔记录一些遇到的比较有代表性的模型,断续更新.主要做一个收集整理总结工作. 记录 0x01 POJ - 1821 Fence,比较适合入门的题, ...

  5. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

  6. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  7. hdu3401:单调队列优化dp

    第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...

  8. Parade(单调队列优化dp)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others)    ...

  9. BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP

    BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...

  10. 【单调队列优化dp】 分组

    [单调队列优化dp] 分组 >>>>题目 [题目] 给定一行n个非负整数,现在你可以选择其中若干个数,但不能有连续k个数被选择.你的任务是使得选出的数字的和最大 [输入格式] ...

随机推荐

  1. [python-opencv]超大图像二值化方法

    *分块 *全局阈值 VS 局部阈值 import cv2 as cv import numpy as np def big_image_binary(image): print(image.shape ...

  2. 009-java中常用的单个键值对

    1.Java 6提供AbstractMap.SimpleEntry<K,V>和AbstractMap.SimpleImmutableEntry<K,V> Map.Entry&l ...

  3. 实习培训——Servlet(6)

    实习培训——Servlet(6) 1  Servlet 客户端 HTTP 请求 当浏览器请求网页时,它会向 Web 服务器发送特定信息,这些信息不能被直接读取,因为这些信息是作为 HTTP 请求的头的 ...

  4. 使用gunicorn部署Flask项目

    [*] 本文出处:http://b1u3buf4.xyz/ [*] 本文作者:B1u3Buf4 [*] 本文授权:禁止转载 从自己的博客移动过来. gunicorn是一个python Wsgi的WEB ...

  5. hadoop streaming怎么设置key

    充分利用hadoop的map输出自动排序功能,能够有效提高计算效率.Hadoop streaming框架默认情况下会以'/t’作为分隔符,将每行第一个'/t’之前的部分作为key,其余内容作为valu ...

  6. .net 调用API并解析Json数据方法

    using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using Syst ...

  7. html10

    1.动画fadeIn() - 淡入fadeOut() - 淡出 -通过改变透明度(opacity隐藏之后依旧占着位置)实现节点的显示和隐藏show() - 显示hide() - 隐藏 -同时改变节点的 ...

  8. Docker深入浅出1

    Docker是一个开源的应用容器引擎,基于GO语言并遵从apache2.0协议开源. Docker可以让开发者打包他们的应用以及依赖包到一个轻量级,可移植的容器中,然后发布到任何流行的Linux机器上 ...

  9. svn回滚到某一版本

    svn回滚到某一版本 (1)在代码文件夹或vs中show log,查看历史,记住想要回滚到的版本号如1000 (2)新建文件夹,右击svn checkout,在revision中输入版本号1000

  10. meta 如何写

    阻止手机号加下划线,可拨打:<meta name="format-detection" content="telephone=no" />  (io ...