hdu 2444 The Accomodation of Students 【二分图匹配】
There are a group of students. Some of them may know each other, while others don't. For example, A and B know each other, B and C know each other. But this may not imply that A and C know each other.
Now you are given all pairs of students who know each other. Your task is to divide the students into two groups so that any two students in the same group don't know each other.If this goal can be achieved, then arrange them into double rooms. Remember, only
paris appearing in the previous given set can live in the same room, which means only known students can live in the same room.
Calculate the maximum number of pairs that can be arranged into these double rooms.
InputFor each data set:
The first line gives two integers, n and m(1<n<=200), indicating there are n students and m pairs of students who know each other. The next m lines give such pairs.
Proceed to the end of file.
OutputIf these students cannot be divided into two groups, print "No". Otherwise, print the maximum number of pairs that can be arranged in those rooms.
Sample Input
4 4
1 2
1 3
1 4
2 3
6 5
1 2
1 3
1 4
2 5
3 6
Sample Output
No
3
tips:给这些点涂上黑白两色,就可以表示分出集合了
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <map>
#include <cmath>
#include <iomanip>
#define inf 0x3f3f3f3f
typedef long long LL;
using namespace std;
const int maxn = 205;
int n, m;
/*struct edge{
int from, to;
edge(int f, int t): from(f), to(t){}
};*/
vector <int> G[maxn];
//vector <edge> edges;
int col[maxn],pre[maxn], flag[maxn];
int check[maxn];
bool dfs(int u, int tar)//黑白标色 找到NO的情况 也就是路径上间隔1的点颜色相同
{
for(int i = 0; i < G[u].size(); i++){
int v = G[u][i];
if(col[v] == -1){
check[v] = true;
col[v] = tar ^ 1;
if(!dfs(v, col[v])){
return false;
}
}
else if(col[v] == (tar ^ 1)) check[v] = true;
else if(col[v] == tar) return false;
}
return true;
}
int ffind(int u)//找增广路
{
for(int i = 0; i < G[u].size(); i++){
int v = G[u][i];
if(!flag[v]){
flag[v] = true;
if(pre[v] == -1 || ffind(pre[v])){
pre[v] = u;
return true;
}
}
}
return false;
}
void init()
{
for(int i = 0; i < n; i++){
G[i].clear();
}
memset(pre, -1, sizeof(pre));
memset(col, -1, sizeof(col));
memset(check, false, sizeof(check));
}
int main()
{
while(scanf("%d%d",&n,&m) != EOF){
//int k = 0;
init();
for(int i = 0; i < m; i++){
int f,t;
scanf("%d%d",&f,&t);
G[f - 1].push_back(t - 1);
//edge e(f - 1,t - 1);
//edges.push_back(e);
}
bool tar = false;
for(int i = 0; i < n; i++){
if(check[i]) continue;
col[i] = 1;
if(!dfs(i, col[i])){
tar = true;
break;
}
}
if(tar){
printf("No\n");
continue;
}
int sum = 0;
for(int i = 0; i < n; i++){
memset(flag, false, sizeof(flag));
sum += ffind(i);
}
printf("%d\n",sum);
}
return 0;
}
hdu 2444 The Accomodation of Students 【二分图匹配】的更多相关文章
- HDU 2444 The Accomodation of Students 二分图判定+最大匹配
题目来源:HDU 2444 The Accomodation of Students 题意:n个人能否够分成2组 每组的人不能相互认识 就是二分图判定 能够分成2组 每组选一个2个人认识能够去一个双人 ...
- hdu 2444 The Accomodation of Students(二分匹配 匈牙利算法 邻接表实现)
The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ( ...
- HDU 2444 - The Accomodation of Students - [二分图判断][匈牙利算法模板]
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=2444 Time Limit: 5000/1000 MS (Java/Others) Mem ...
- HDU 2444 The Accomodation of Students (二分图存在的判定以及最大匹配数)
There are a group of students. Some of them may know each other, while others don't. For example, A ...
- HDU 2444 The Accomodation of Students二分图判定和匈牙利算法
本题就是先推断能否够组成二分图,然后用匈牙利算法求出最大匹配. 究竟怎样学习一种新算法呢? 我也不知道什么方法是最佳的了,由于看书本和大牛们写的匈牙利算法具体分析,看了几乎相同两个小时没看懂,最后自己 ...
- hdu 2444 The Accomodation of Students(最大匹配 + 二分图判断)
http://acm.hdu.edu.cn/showproblem.php?pid=2444 The Accomodation of Students Time Limit:1000MS Me ...
- hdu 2444 The Accomodation of Students 判断二分图+二分匹配
The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ( ...
- HDU 2444 The Accomodation of Students(判断二分图+最大匹配)
The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ( ...
- hdu 2444 The Accomodation of Students (判断二分图,最大匹配)
The Accomodation of StudentsTime Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (J ...
- HDU 2444 The Accomodation of Students (偶图判定,匈牙利算法)
题意: 有一堆的学生关系,要将他们先分成两个组,同组的人都不互不认识,如果不能分2组,输出No.若能,则继续.在两组中挑两个认识的人(每组各1人)到一个双人房.输出需要多少个双人房? 思路: 先判定是 ...
随机推荐
- repo_file_in_folder
-- Create table create table repo_file ( uuid ), create_time ), creator ), modify_time ), modifier ) ...
- 使用monkey技术修改python requests模块
例如请求前和请求后各来一条日志,这样就不需要在自己的每个代码都去加日志了. 其实也可以直接记录'urllib3.connectionpool' logger name的日志. 修改了requests ...
- 【转】 Android定时器
转载自:http://www.android-study.com/pingtaikaifa/508.html 在Android开发中,定时器一般有以下3种实现方法: 一.采用Handler与线程的sl ...
- 使用Matplotlib画图系列(一)
实现一个最简单的plot函数调用: import matplotlib.pyplot as plt y=pp.DS.Transac_open # 设置y轴数据,以数组形式提供 x=len(y) # 设 ...
- BearSkill纯代码搭建iOS界面
欢迎相同喜欢动效的project师/UI设计师/产品增加我们 iOS动效特攻队–>QQ群:547897182 iOS动效特攻队–>熊熊:648070256 浅谈一下 关于iOS兼容布局一直 ...
- Fiddler 抓取 Genymotion 数据包
对genymotion进行如下设置
- springboot学习过程笔记
1.spring-boot-devtools热部署在IDEA中配置后不起作用(Eclipse设置了自动编译,所以不用额外设置) 1).pom.xml添加spring-boot-devtools依赖后 ...
- Memcached 数据导出与导入
我们使用 memcached-tool 命令来导出数据: [root@localhost ~]# memcached-tool dump > /tmp/.txt Dumping memcache ...
- O2O(online to offline)营销模式
O2O营销模式又称离线商务模式,是指线上营销线上购买带动线下经营和线下消费.O2O通过打折.提供信息.服务预订等方式,把线下商店的消息推送给互联网用户,从而将他们转换为自己的线下客户,这就特别适合必须 ...
- nsi脚本中执行.bat文件要隐藏dos窗口问题
问题原因:工作中,在一个nsi的安装脚本文件中需要安装虚拟摄像头驱动,安装驱动脚本是.bat文件.使用nsi的execwait函数执行.bat文件时会显示dos窗口.但是领导要求不能显示dos窗口. ...