更好的阅读体验

Portal

Portal1: Codeforces

Portal2: Luogu

Description

Recently Lynyrd and Skynyrd went to a shop where Lynyrd bought a permutation \(p\) of length \(n\), and Skynyrd bought an array \(a\) of length \(m\), consisting of integers from \(1\) to \(n\).

Lynyrd and Skynyrd became bored, so they asked you \(q\) queries, each of which has the following form: "does the subsegment of \(a\) from the \(l\)-th to the \(r\)-th positions, inclusive, have a subsequence that is a cyclic shift of \(p\)?" Please answer the queries.

A permutation of length \(n\) is a sequence of \(n\) integers such that each integer from \(1\) to \(n\) appears exactly once in it.

A cyclic shift of a permutation \((p_1, p_2, \ldots, p_n)\) is a permutation \((p_i, p_{i + 1}, \ldots, p_{n}, p_1, p_2, \ldots, p_{i - 1})\) for some \(i\) from \(1\) to \(n\). For example, a permutation \((2, 1, 3)\) has three distinct cyclic shifts: \((2, 1, 3)\), \((1, 3, 2)\), \((3, 2, 1)\).

A subsequence of a subsegment of array \(a\) from the \(l\)-th to the \(r\)-th positions, inclusive, is a sequence \(a_{i_1}, a_{i_2}, \ldots, a_{i_k}\) for some \(i_1, i_2, \ldots, i_k\) such that \(l \leq i_1 < i_2 < \ldots < i_k \leq r\).

Input

The first line contains three integers \(n\), \(m\), \(q\) (\(1 \le n, m, q \le 2 \cdot 10^5\)) — the length of the permutation \(p\), the length of the array \(a\) and the number of queries.

The next line contains \(n\) integers from \(1\) to \(n\), where the \(i\)-th of them is the \(i\)-th element of the permutation. Each integer from \(1\) to \(n\) appears exactly once.

The next line contains \(m\) integers from \(1\) to \(n\), the \(i\)-th of them is the \(i\)-th element of the array \(a\).

The next \(q\) lines describe queries. The \(i\)-th of these lines contains two integers \(l_i\) and \(r_i\) (\(1 \le l_i \le r_i \le m\)), meaning that the \(i\)-th query is about the subsegment of the array from the \(l_i\)-th to the \(r_i\)-th positions, inclusive.

Output

Print a single string of length \(q\), consisting of \(0\) and \(1\), the digit on the \(i\)-th positions should be \(1\), if the subsegment of array \(a\) from the \(l_i\)-th to the \(r_i\)-th positions, inclusive, contains a subsequence that is a cyclic shift of \(p\), and \(0\) otherwise.

Sample Input1

3 6 3
2 1 3
1 2 3 1 2 3
1 5
2 6
3 5

Sample Output1

110

Sample Input2

2 4 3
2 1
1 1 2 2
1 2
2 3
3 4

Sample Output2

010

Hint

In the first example the segment from the \(1\)-st to the \(5\)-th positions is \(1, 2, 3, 1, 2\). There is a subsequence \(1, 3, 2\) that is a cyclic shift of the permutation. The subsegment from the \(2\)-nd to the \(6\)-th positions also contains a subsequence \(2, 1, 3\) that is equal to the permutation. The subsegment from the \(3\)-rd to the \(5\)-th positions is \(3, 1, 2\), there is only one subsequence of length \(3\) (\(3, 1, 2\)), but it is not a cyclic shift of the permutation.

In the second example the possible cyclic shifts are \(1, 2\) and \(2, 1\). The subsegment from the \(1\)-st to the \(2\)-nd positions is \(1, 1\), its subsequences are not cyclic shifts of the permutation. The subsegment from the \(2\)-nd to the \(3\)-rd positions is \(1, 2\), it coincides with the permutation. The subsegment from the \(3\) to the \(4\) positions is \(2, 2\), its subsequences are not cyclic shifts of the permutation.

Solution

我们可以先预处理出\(a_i\)在\(p\)序列中的前一个数为\(\mathrm{last}_i\)。如果它能构成一个合法的循环序列,就代表它能够向前位移\(n - 1\)次\(\mathrm{last}\)。所以我们可以用倍增来解决。我们取一个最大的合法循环序列的头表示为\(\mathrm{b}_i\),那么最后的条件就是:

\[\max ^ {r} _ {i = l}{\mathrm{b}_i} \ge l
\]

满足就输出\(1\),否则输出\(0\)。

Code

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath> using namespace std; const int MAXN = 1000005, MAXM = 30;
int n, m, q, l, r, a[MAXN], b[MAXN], p[MAXN], last[MAXN], pos[MAXN], st[MAXN][MAXM];
inline int calc_step(int x) {
int s = 0;
for (int i = 25; i >= 0; i--)
if (s + (1 << i) < n) {
x = st[x][i];
s += 1 << i;
}
return x;
}
inline int query(int l, int r) {
int x = (int)log2(r - l + 1);
return max(st[l][x], st[r - (1 << x) + 1][x]);//询问ST表
}
int main() {
scanf("%d%d%d", &n, &m, &q);
for (int i = 1; i <= n; i++) {
scanf("%d", &p[i]);
pos[p[i]] = i;
}
for (int i = 1; i <= m; i++) {
scanf("%d", &a[i]);
if (pos[a[i]] == 1) st[i][0] = last[p[n]]; else st[i][0] = last[p[pos[a[i]] - 1]];
last[a[i]] = i;
}
for (int j = 1; j <= 25; j++)
for (int i = 1; i <= m; i++)
st[i][j] = st[st[i][j - 1]][j - 1];
for (int i = 1; i <= m; i++)
b[i] = calc_step(i);
memset(st, 0, sizeof(st));
for (int i = 1; i <= m; i++)
st[i][0] = b[i];
for (int j = 1; j <= (int)log2(m); j++)
for (int i = 1; i <= m - (1 << j) + 1; i++)
st[i][j] = max(st[i][j - 1], st[i + (1 << j - 1)][j - 1]);//ST表
for (int i = 1; i <= q; i++) {
scanf("%d%d", &l, &r);
if (query(l, r) >= l) printf("1"); else printf("0");
}
return 0;
}

『题解』Codeforces1142B Lynyrd Skynyrd的更多相关文章

  1. 『题解』洛谷P1063 能量项链

    原文地址 Problem Portal Portal1:Luogu Portal2:LibreOJ Portal3:Vijos Description 在\(Mars\)星球上,每个\(Mars\)人 ...

  2. 【题解】CF1142B Lynyrd Skynyrd(倍增)

    [题解]CF1142B Lynyrd Skynyrd(倍增) 调了一个小时原来是读入读反了.... 求子段是否存在一个排列的子序列的套路是把给定排列看做置换,然后让给定的序列乘上这个置换,问题就转化为 ...

  3. 『题解』Codeforces1142A The Beatles

    更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description Recently a Golden Circle of Beetlovers ...

  4. 『题解』洛谷P1993 小K的农场

    更好的阅读体验 Portal Portal1: Luogu Description 小\(K\)在\(\mathrm MC\)里面建立很多很多的农场,总共\(n\)个,以至于他自己都忘记了每个农场中种 ...

  5. 『题解』洛谷P2296 寻找道路

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 在有向图\(\mathrm G\)中,每条边的长度均为\(1\),现给定起点和终点 ...

  6. 『题解』洛谷P1351 联合权值

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 无向连通图\(\mathrm G\)有\(n\)个点,\(n - 1\)条边.点从 ...

  7. 『题解』Codeforces656E Out of Controls

    更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description You are given a complete undirected gr ...

  8. 『题解』洛谷P2170 选学霸

    更好的阅读体验 Portal Portal1: Luogu Description 老师想从\(N\)名学生中选\(M\)人当学霸,但有\(K\)对人实力相当,如果实力相当的人中,一部分被选上,另一部 ...

  9. 『题解』洛谷P1083 借教室

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Portal3: Vijos Description 在大学期间,经常需要租借教室.大到院系举办活动,小到 ...

随机推荐

  1. linux分区与挂载

    分区是将一个硬盘驱动器分成若干个逻辑驱动器,分区是把硬盘连续的区块当做一个独立的磁盘使用.分区表是一个硬盘分区的索引,分区的信息都会写进分区表.通常情况下,为磁盘分区通常使用fdisk,它是对基于MB ...

  2. 【TencentOS tiny】深度源码分析(8)——软件定时器

    软件定时器的基本概念 TencentOS tiny 的软件定时器是由操作系统提供的一类系统接口,它构建在硬件定时器基础之上,使系统能够提供不受硬件定时器资源限制的定时器服务,本质上软件定时器的使用相当 ...

  3. Java类和对象动手动脑

    动手动脑1 以下代码为何无法通过编译?哪儿出错了?

  4. 洛谷 1552 [APIO2012]派遣

    题目背景 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿. 题目描述 在这个帮派里,有一名忍者被称之为Master.除了Master以外,每名忍者都有且仅有一个上级.为保密 ...

  5. 部署主从dns

    主机部署:yum安装DNS服务和依赖 [admin@haifly-bj-dns1 ~]$ sudo yum install bind-chroot启动named-chroot服务 [admin@hai ...

  6. 算法学习之剑指offer(五)

    题目1 题目描述 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. public class Solution ...

  7. 前端开发 JavaScript 干货知识点汇总

    很多初学的朋友经常问我,前端JavaScript都需要学习哪些东西呀?哪些是JavaScript的重点知识啊? 其实做前端开发工程师,所有的知识点都是我们学习必备的东西,只有扎实的技术基础才是高薪的关 ...

  8. webshell环境下信息收集备忘录

    重视信息收集.再次复习下基础且重要的命令,特别是wmic的使用 Whoami /all Ipconfig /all Route print tasklist /svc Query uer quser ...

  9. 原生无缝Banner轮播图

    话不多说,先展示效果图.由于录制工具,稍显卡顿,实际是流畅的.可以看到实现了无缝轮播,鼠标悬停,点击左右上下按钮切换Banner的功能,如图1所示. 图1 原生无缝banner效果展示 以我这个轮播图 ...

  10. Beetlex服务框架之Webapi访问限制和url重写

    在新版本的BeetleX.FastHttpApi中集成了IP访问策略和URL重写两个功能,通过IP访问策略可以制定服务针对不同IP的访问限制控制:而URL重写则可以制定更好的URL访问方式.以下介绍这 ...