更好的阅读体验

Portal

Portal1: Codeforces

Portal2: Luogu

Description

Recently Lynyrd and Skynyrd went to a shop where Lynyrd bought a permutation \(p\) of length \(n\), and Skynyrd bought an array \(a\) of length \(m\), consisting of integers from \(1\) to \(n\).

Lynyrd and Skynyrd became bored, so they asked you \(q\) queries, each of which has the following form: "does the subsegment of \(a\) from the \(l\)-th to the \(r\)-th positions, inclusive, have a subsequence that is a cyclic shift of \(p\)?" Please answer the queries.

A permutation of length \(n\) is a sequence of \(n\) integers such that each integer from \(1\) to \(n\) appears exactly once in it.

A cyclic shift of a permutation \((p_1, p_2, \ldots, p_n)\) is a permutation \((p_i, p_{i + 1}, \ldots, p_{n}, p_1, p_2, \ldots, p_{i - 1})\) for some \(i\) from \(1\) to \(n\). For example, a permutation \((2, 1, 3)\) has three distinct cyclic shifts: \((2, 1, 3)\), \((1, 3, 2)\), \((3, 2, 1)\).

A subsequence of a subsegment of array \(a\) from the \(l\)-th to the \(r\)-th positions, inclusive, is a sequence \(a_{i_1}, a_{i_2}, \ldots, a_{i_k}\) for some \(i_1, i_2, \ldots, i_k\) such that \(l \leq i_1 < i_2 < \ldots < i_k \leq r\).

Input

The first line contains three integers \(n\), \(m\), \(q\) (\(1 \le n, m, q \le 2 \cdot 10^5\)) — the length of the permutation \(p\), the length of the array \(a\) and the number of queries.

The next line contains \(n\) integers from \(1\) to \(n\), where the \(i\)-th of them is the \(i\)-th element of the permutation. Each integer from \(1\) to \(n\) appears exactly once.

The next line contains \(m\) integers from \(1\) to \(n\), the \(i\)-th of them is the \(i\)-th element of the array \(a\).

The next \(q\) lines describe queries. The \(i\)-th of these lines contains two integers \(l_i\) and \(r_i\) (\(1 \le l_i \le r_i \le m\)), meaning that the \(i\)-th query is about the subsegment of the array from the \(l_i\)-th to the \(r_i\)-th positions, inclusive.

Output

Print a single string of length \(q\), consisting of \(0\) and \(1\), the digit on the \(i\)-th positions should be \(1\), if the subsegment of array \(a\) from the \(l_i\)-th to the \(r_i\)-th positions, inclusive, contains a subsequence that is a cyclic shift of \(p\), and \(0\) otherwise.

Sample Input1

3 6 3
2 1 3
1 2 3 1 2 3
1 5
2 6
3 5

Sample Output1

110

Sample Input2

2 4 3
2 1
1 1 2 2
1 2
2 3
3 4

Sample Output2

010

Hint

In the first example the segment from the \(1\)-st to the \(5\)-th positions is \(1, 2, 3, 1, 2\). There is a subsequence \(1, 3, 2\) that is a cyclic shift of the permutation. The subsegment from the \(2\)-nd to the \(6\)-th positions also contains a subsequence \(2, 1, 3\) that is equal to the permutation. The subsegment from the \(3\)-rd to the \(5\)-th positions is \(3, 1, 2\), there is only one subsequence of length \(3\) (\(3, 1, 2\)), but it is not a cyclic shift of the permutation.

In the second example the possible cyclic shifts are \(1, 2\) and \(2, 1\). The subsegment from the \(1\)-st to the \(2\)-nd positions is \(1, 1\), its subsequences are not cyclic shifts of the permutation. The subsegment from the \(2\)-nd to the \(3\)-rd positions is \(1, 2\), it coincides with the permutation. The subsegment from the \(3\) to the \(4\) positions is \(2, 2\), its subsequences are not cyclic shifts of the permutation.

Solution

我们可以先预处理出\(a_i\)在\(p\)序列中的前一个数为\(\mathrm{last}_i\)。如果它能构成一个合法的循环序列,就代表它能够向前位移\(n - 1\)次\(\mathrm{last}\)。所以我们可以用倍增来解决。我们取一个最大的合法循环序列的头表示为\(\mathrm{b}_i\),那么最后的条件就是:

\[\max ^ {r} _ {i = l}{\mathrm{b}_i} \ge l
\]

满足就输出\(1\),否则输出\(0\)。

Code

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath> using namespace std; const int MAXN = 1000005, MAXM = 30;
int n, m, q, l, r, a[MAXN], b[MAXN], p[MAXN], last[MAXN], pos[MAXN], st[MAXN][MAXM];
inline int calc_step(int x) {
int s = 0;
for (int i = 25; i >= 0; i--)
if (s + (1 << i) < n) {
x = st[x][i];
s += 1 << i;
}
return x;
}
inline int query(int l, int r) {
int x = (int)log2(r - l + 1);
return max(st[l][x], st[r - (1 << x) + 1][x]);//询问ST表
}
int main() {
scanf("%d%d%d", &n, &m, &q);
for (int i = 1; i <= n; i++) {
scanf("%d", &p[i]);
pos[p[i]] = i;
}
for (int i = 1; i <= m; i++) {
scanf("%d", &a[i]);
if (pos[a[i]] == 1) st[i][0] = last[p[n]]; else st[i][0] = last[p[pos[a[i]] - 1]];
last[a[i]] = i;
}
for (int j = 1; j <= 25; j++)
for (int i = 1; i <= m; i++)
st[i][j] = st[st[i][j - 1]][j - 1];
for (int i = 1; i <= m; i++)
b[i] = calc_step(i);
memset(st, 0, sizeof(st));
for (int i = 1; i <= m; i++)
st[i][0] = b[i];
for (int j = 1; j <= (int)log2(m); j++)
for (int i = 1; i <= m - (1 << j) + 1; i++)
st[i][j] = max(st[i][j - 1], st[i + (1 << j - 1)][j - 1]);//ST表
for (int i = 1; i <= q; i++) {
scanf("%d%d", &l, &r);
if (query(l, r) >= l) printf("1"); else printf("0");
}
return 0;
}

『题解』Codeforces1142B Lynyrd Skynyrd的更多相关文章

  1. 『题解』洛谷P1063 能量项链

    原文地址 Problem Portal Portal1:Luogu Portal2:LibreOJ Portal3:Vijos Description 在\(Mars\)星球上,每个\(Mars\)人 ...

  2. 【题解】CF1142B Lynyrd Skynyrd(倍增)

    [题解]CF1142B Lynyrd Skynyrd(倍增) 调了一个小时原来是读入读反了.... 求子段是否存在一个排列的子序列的套路是把给定排列看做置换,然后让给定的序列乘上这个置换,问题就转化为 ...

  3. 『题解』Codeforces1142A The Beatles

    更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description Recently a Golden Circle of Beetlovers ...

  4. 『题解』洛谷P1993 小K的农场

    更好的阅读体验 Portal Portal1: Luogu Description 小\(K\)在\(\mathrm MC\)里面建立很多很多的农场,总共\(n\)个,以至于他自己都忘记了每个农场中种 ...

  5. 『题解』洛谷P2296 寻找道路

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 在有向图\(\mathrm G\)中,每条边的长度均为\(1\),现给定起点和终点 ...

  6. 『题解』洛谷P1351 联合权值

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 无向连通图\(\mathrm G\)有\(n\)个点,\(n - 1\)条边.点从 ...

  7. 『题解』Codeforces656E Out of Controls

    更好的阅读体验 Portal Portal1: Codeforces Portal2: Luogu Description You are given a complete undirected gr ...

  8. 『题解』洛谷P2170 选学霸

    更好的阅读体验 Portal Portal1: Luogu Description 老师想从\(N\)名学生中选\(M\)人当学霸,但有\(K\)对人实力相当,如果实力相当的人中,一部分被选上,另一部 ...

  9. 『题解』洛谷P1083 借教室

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Portal3: Vijos Description 在大学期间,经常需要租借教室.大到院系举办活动,小到 ...

随机推荐

  1. Spring Boot 2.X(七):Spring Cache 使用

    Spring Cache 简介 在 Spring 3.1 中引入了多 Cache 的支持,在 spring-context 包中定义了org.springframework.cache.Cache 和 ...

  2. 【TencentOS tiny】深度源码分析(3)——队列

    队列基本概念 队列是一种常用于任务间通信的数据结构,队列可以在任务与任务间.中断和任务间传递消息,实现了任务接收来自其他任务或中断的不固定长度的消息,任务能够从队列里面读取消息,当队列中的消息是空时, ...

  3. spring源码分析系列5:ApplicationContext的初始化与Bean生命周期

    回顾Bean与BeanDefinition的关系. BeanFactory容器. ApplicationContext上下文. 首先总结下: 开发人员定义Bean信息:分为XML形式定义:注解式定义 ...

  4. Django+小程序技术打造微信小程序助手 ✌✌

    Django+小程序技术打造微信小程序助手 (一个人学习或许会很枯燥,但是寻找更多志同道合的朋友一起,学习将会变得更加有意义✌✌) 从零到一的完整项目开发实战过程,项目开发聚焦重要知识点,先原理后实战 ...

  5. Win10安装虚拟机 + Ubuntu

    近期需要利用虚拟机,同时在虚拟机中安装Ubuntu系统.整理安装过程,供今后学习参考. 虚拟机安装包:VMware-workstation-full-12.1.0 链接:https://pan.bai ...

  6. PHP 利用闭包偷窥马对人类的想法

    <?php /** * reference:http://www.php.net/manual/en/reflectionmethod.getclosure.php * Learn this a ...

  7. [Luogu3070][USACO13JAN]岛游记Island Travels

    题目描述 Farmer John has taken the cows to a vacation out on the ocean! The cows are living on N (1 < ...

  8. 【Redis】Could not get a resource from the pool 实乃集群配置问题

    先说些题外话~自上次确诊为鼻窦炎+过敏性鼻炎到现在已经一个月了,最初那会,从下午到晚上头疼难忍.大概是积劳成疾,以前流鼻涕.打喷嚏的时候从来没有注意过,结果病根一下爆发. 关键在于锁定问题,开始治疗一 ...

  9. Halcon一日一练:获取程序运行时间

    很多时候,我们需要知道每个函数的运算周期,以提高程序的运行效率.知道运行时间对于图像算法处理很重要 Halcon提供相关的算子,我们先来看代码: **获取图像处理时间 read_image(Image ...

  10. 同一台机上配置多个redis服务

    "D:\Program Files\Redis\redis-server.exe" --service-run F:Redis2\redis.windows-service6380 ...