1. 基本原理

在灰度图中,像素值的范围为[0, 255],即共有256级灰度。在计算机中,我们使用8比特数来表示每一个像素值。因此可以提取出不同比特层面的灰度图。比特层面分层可用于图片压缩:只储存较高比特层(为什么使用较高层,而不是较低层?通过二进制转换,我们知道较高层在数值中的贡献更大);如使用高四位比特层表示原有的八层比特平面。

2. 测试结果

图源自skimage

3. 代码

 def extract_bit_layer(input_image, layer_num):
'''
提取比特层
:param input_image: 原图像
:param layer_num: 提取层
:return: 提取到的比特层
'''
input_image_cp = np.copy(input_image) # 输入图片的副本 if layer_num == 1:
input_image_cp = np.where((input_image_cp >= 0) & (input_image_cp < 2), 255, 0)
elif layer_num == 2:
input_image_cp = np.where((input_image_cp >= 2) & (input_image_cp < 4), 255, 0)
elif layer_num == 3:
input_image_cp = np.where((input_image_cp >= 4) & (input_image_cp < 8), 255, 0)
elif layer_num == 4:
input_image_cp = np.where((input_image_cp >= 8) & (input_image_cp < 16), 255, 0)
elif layer_num == 5:
input_image_cp = np.where((input_image_cp >= 16) & (input_image_cp < 32), 255, 0)
elif layer_num == 6:
input_image_cp = np.where((input_image_cp >= 32) & (input_image_cp < 64), 255, 0)
elif layer_num == 7:
input_image_cp = np.where((input_image_cp >= 64) & (input_image_cp < 128), 255, 0)
elif layer_num == 8:
input_image_cp = np.where((input_image_cp >= 128) & (input_image_cp < 256), 255, 0)
else:
print("please enter the number of bit layers from 1 to 8") output_image = input_image_cp return output_image

比特平面分层(一些基本的灰度变换函数)基本原理及Python实现的更多相关文章

  1. imadjust从用法到原理—Matlab灰度变换函数之一

    imadjust从用法到原理-Matlab灰度变换函数之一 转摘网址:http://blog.sina.com.cn/s/blog_14d1511ee0102ww6s.html imadjust函数是 ...

  2. 灰度级分层(一些基本的灰度变换函数)基本原理及Python实现

    1. 基本原理 灰度级分层通常用于突出感兴趣的特定灰度范围内的亮度.灰度级分层有两大基本方法. 将感兴趣的灰度范围内的值显示为一个值(比如0),而其他范围的值为另外一个值(255). 将感兴趣的灰度范 ...

  3. 对比度拉伸(一些基本的灰度变换函数)基本原理及Python实现

    1. 基本原理 对比度拉伸是扩展图像灰度级动态范围的处理.通过在灰度级中确定两个点来控制变换函数的形状.下面是对比度拉伸函数中阈值处理的代码示例,阈值为平均值. 2. 测试结果 图源自skimage ...

  4. 对数变换(一些基本的灰度变换函数)基本原理及Python实现

    1. 基本原理 变换形式如下 $$T(r) = c\lg(r+1)$$ c为常数 由于对数函数的导数随自变量的增大而减小,对数变换将输入窄范围的低灰度值扩展为范围宽的灰度值和宽范围的高灰度值压缩为映射 ...

  5. 伽马变换(一些基本的灰度变换函数)基本原理及Python实现

    1. 基本原理 变换形式 $$s=cr^{\gamma}$$ c与$\gamma$均为常数 可通过调整$\gamma$来调整该变换,最常用于伽马校正与对比度增强 2. 测试结果 图源自skimage ...

  6. 图像反转(一些基本的灰度变换函数)基本原理及Python实现

    1. 基本原理 获取像素值在[0, L]范围内的图像的反转图像,即为负片.适用于增强图像中白色或者灰色的区域,尤其当黑色在图片中占主地位时候 $$T(r) = L-r$$ 2. 运行结果 图源自ski ...

  7. 数字图像处理(一)之灰度转换和卷积python实现

    使用Python实现数字图像处理中如下功能: 彩色图像转成灰度图像 实现图像的相关&卷积操作 实现图像的高斯核卷积 使用的库和python版本如下: imageio:2.9.0 用于读取磁盘中 ...

  8. 【Duke-Image】Week_3 Spatial processing

    Chapter_3 Intensity Transsformations and Spatial Filtering 灰度变换与空间滤波 Intensity transformation functi ...

  9. Digital Image Processing 学习笔记3

    第三章 灰度变换与空间滤波 3.1 背景知识 3.1.1 灰度变换和空间滤波基础 本章节所讨论的图像处理技术都是在空间域进行的.可以表示为下式: $$g(x, y) = T[f(x,y)]$$ 其中$ ...

随机推荐

  1. java虚拟机-GC-新生代的GC、老年代的GC

    名词解释: GC:垃圾收集器 Minor GC:新生代GC,指发生在新生代的垃圾收集动作,所有的Minor GC都会触发全世界的暂停(stop-the-world),停止应用程序的线程,不过这个过程非 ...

  2. scrapy基础知识之发送POST请求:

    可以使用 yield scrapy.FormRequest(url, formdata, callback)方法发送POST请求. 如果希望程序执行一开始就发送POST请求,可以重写Spider类的s ...

  3. [常用命令]OSX命令

    在mac os下,如何通过命令行来下载网络文件?如果你没有安装或wget命令,那么可以使用curl工具来达到我们的目的. curl命令参数: curl ‘url地址’ curl [选项] ‘url地址 ...

  4. select自定义下拉三角符号,css样式小细节

    本来没有写文章的习惯,但是闲下来了,整理资料,发现还挺纠结,对前端来说.所以整理下,希望对看到的人有所帮助,毕竟我不是前端开发. 起因,是前端告诉我select 框的三角箭头不能自定义.但是第二次的时 ...

  5. Docker笔记(一):什么是Docker

    原文地址: http://blog.jboost.cn/2019/07/13/docker-1.html  1. 前言 接触Docker也有两年多了,断断续续玩过一些应用场景,如安装一些常用工具服务, ...

  6. String到底在内存中是如何存储的

    String会出现在哪些地方 方法内的局部string 类内的字段String static string 容器中存储的string String数组 那么String的位置会影响其存储方式吗? 显然 ...

  7. 基于SpringCloud的微服务架构实战案例项目,以一个简单的购物流程为示例

    QuickStart 基于SpringCloud体系实现,简单购物流程实现,满足基本功能:注册.登录.商品列表展示.商品详情展示.订单创建.详情查看.订单支付.库存更新等等. 每个业务服务采用独立的M ...

  8. Logstash : 从 SQL Server 读取数据

    有些既存的项目把一部分日志信息写入到数据库中了,或者是由于其它的原因我们希望把关系型数据库中的信息读取到 elasticsearch 中.这种情况可以使用 logstash 的 jdbc input ...

  9. Oracle粗心大意总结篇

    有时候写sql语句不细心的话,很容易犯大错误,导致你纠结好久,找不到原因,慢慢总结: 错误1: SELECT * FROM( SELECT USER.*, ROWNUM AS CON FROM USE ...

  10. 洛谷 P1463、POI2002、HAOI2007 反素数

    题意: 求最小的$x\in[1,N]$,使得$x$为$g(x)$最大的数 中最小的一个. 分析: 1.$x$不会有超过$10$个不同质因子.理由:$2 \times 3\times 5...\time ...