Codeforces Round #598 (Div. 3) E. Yet Another Division Into Teams dp
E. Yet Another Division Into Teams
There are n students at your university. The programming skill of the i-th student is ai. As a coach, you want to divide them into teams to prepare them for the upcoming ICPC finals. Just imagine how good this university is if it has 2⋅105 students ready for the finals!
Each team should consist of at least three students. Each student should belong to exactly one team. The diversity of a team is the difference between the maximum programming skill of some student that belongs to this team and the minimum programming skill of some student that belongs to this team (in other words, if the team consists of k students with programming skills a[i1],a[i2],…,a[ik], then the diversity of this team is maxj=1ka[ij]−minj=1ka[ij]).
The total diversity is the sum of diversities of all teams formed.
Your task is to minimize the total diversity of the division of students and find the optimal way to divide the students.
Input
The first line of the input contains one integer n (3≤n≤2⋅105) — the number of students.
The second line of the input contains n integers a1,a2,…,an (1≤ai≤109), where ai is the programming skill of the i-th student.
Output
In the first line print two integers res and k — the minimum total diversity of the division of students and the number of teams in your division, correspondingly.
In the second line print n integers t1,t2,…,tn (1≤ti≤k), where ti is the number of team to which the i-th student belong.
If there are multiple answers, you can print any. Note that you don't need to minimize the number of teams. Each team should consist of at least three students.
Examples
input
5
1 1 3 4 2
output
3 1
1 1 1 1 1
input
6
1 5 12 13 2 15
output
7 2
2 2 1 1 2 1
input
10
1 2 5 129 185 581 1041 1909 1580 8150
output
7486 3
3 3 3 2 2 2 2 1 1 1
Note
In the first example, there is only one team with skills [1,1,2,3,4] so the answer is 3. It can be shown that you cannot achieve a better answer.
In the second example, there are two teams with skills [1,2,5] and [12,13,15] so the answer is 4+3=7.
In the third example, there are three teams with skills [1,2,5], [129,185,581,1041] and [1580,1909,8150] so the answer is 4+912+6570=7486.
题意
这个学校里面有n个学生,你需要给他们分成若干的队伍,每个队伍最少3个人。
每个队伍定义差异值是这个队伍最强的人和最弱的人的能力值差。
现在你需要构建若干个队伍,使得差异值的总和最小。
题解
我们先排序,那么分队伍一定是选择排序后的连续几个人组成一队。
然后每个队伍一定人数最多为5个人,因为6个人就可以拆成两队,然后两队的代价一定是比一个队伍的代价小。
然后就是个简单的dp了。
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 200005;
int n;
pair<int,int> k[maxn];
int dp[maxn];
int p[maxn];
int fr[maxn];
int ans_pos[maxn];
int tot=0;
void dfs(int x){
if(x==0)return;
tot++;
p[x]=1;
dfs(fr[x]);
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&k[i].first);
k[i].second=i;
}
sort(k+1,k+1+n);
memset(dp,-1,sizeof(dp));
dp[0]=0;
dp[3]=k[3].first-k[1].first;
for(int i=4;i<=n;i++){
for(int j=3;j<=6;j++){
if(dp[i-j]!=-1){
if(dp[i]==-1){
dp[i]=dp[i-j]+k[i].first-k[i-j+1].first;
fr[i]=i-j;
}
else{
if(dp[i-j]+(k[i].first-k[i-j+1].first)<dp[i]){
fr[i]=i-j;
dp[i]=dp[i-j]+k[i].first-k[i-j+1].first;
}
}
}
}
}
dfs(n);
cout<<dp[n]<<" "<<tot<<endl;
int tot2=1;
for(int i=1;i<=n;i++){
if(p[i]==0){
p[i]=tot2;
}else if(p[i]==1){
p[i]=tot2;
tot2++;
}
}
for(int i=1;i<=n;i++){
ans_pos[k[i].second]=p[i];
}
for(int i=1;i<=n;i++){
cout<<ans_pos[i]<<" ";
}
cout<<endl;
}
Codeforces Round #598 (Div. 3) E. Yet Another Division Into Teams dp的更多相关文章
- Codeforces Round #598 (Div. 3)- E. Yet Another Division Into Teams - 动态规划
Codeforces Round #598 (Div. 3)- E. Yet Another Division Into Teams - 动态规划 [Problem Description] 给你\( ...
- 【CF1256】Codeforces Round #598 (Div. 3) 【思维+贪心+DP】
https://codeforces.com/contest/1256 A:Payment Without Change[思维] 题意:给你a个价值n的物品和b个价值1的物品,问是否存在取物方案使得价 ...
- Codeforces Round #396 (Div. 2) A B C D 水 trick dp 并查集
A. Mahmoud and Longest Uncommon Subsequence time limit per test 2 seconds memory limit per test 256 ...
- Codeforces Round #598 (Div. 3)E(dp路径转移)
题:https://codeforces.com/contest/1256/problem/E 题意:给一些值,代表队员的能力值,每组要分3个或3个以上的人,然后有个评价值x=(队里最大值-最小值), ...
- Codeforces Round #598 (Div. 3)
传送门 A. Payment Without Change 签到. Code /* * Author: heyuhhh * Created Time: 2019/11/4 21:19:19 */ #i ...
- Codeforces Round #598 (Div. 3) F. Equalizing Two Strings 构造
F. Equalizing Two Strings You are given two strings s and t both of length n and both consisting of ...
- Codeforces Round #598 (Div. 3) D. Binary String Minimizing 贪心
D. Binary String Minimizing You are given a binary string of length n (i. e. a string consisting of ...
- Codeforces Round #598 (Div. 3) C. Platforms Jumping 贪心或dp
C. Platforms Jumping There is a river of width n. The left bank of the river is cell 0 and the right ...
- Codeforces Round #598 (Div. 3) B. Minimize the Permutation 贪心
B. Minimize the Permutation You are given a permutation of length n. Recall that the permutation is ...
随机推荐
- Flutter学习笔记(22)--单个子元素的布局Widget(Container、Padding、Center、Align、FittedBox、Offstage、LimitedBox、OverflowBox、SizedBox)
如需转载,请注明出处:Flutter学习笔记(22)--单个子元素的布局Widget(Container.Padding.Center.Align.FittedBox.Offstage.Limited ...
- Android8.1 SystemUI源码分析之 Notification流程
代码流程 1.先看UI显示,StatuBar加载 CollapsedStatusBarFragment 替换 status_bar_container(状态栏通知显示区域) SystemUI\src\ ...
- Dotnetcore安装nuget包时不能使用content中的文件
问题:用NUGET打包了一个asp.netcore的项目,试图安装到另一个asp.netcore项目中,除了自动添加引用外,还希望自动释放一些文件以供修改.这些操作以前在netframe中是正常的,脚 ...
- sqlplus命令窗口执行sql脚本文件
SQL>@file_name 例如 SQL>@monitor.sql 文件须得在当前窗口所在的目录下或者指定某个路径. SQL>@D:\monitor.sql 转载示例-- ...
- Ubuntu安装Node和npm
本文简单介绍在Ubuntu上安装最新版本的node和npm. 本次试验环境是Ubuntu 18.10. 安装nodejs root@ubuntu:~# cat /etc/issue Ubuntu 18 ...
- Element-ui 下拉列表 选项过多时通过自定义搜索来解决卡顿问题
当使用Select选择器时,如果下拉列表的数据量太多,会有一个明显的卡顿体验,例如: <!DOCTYPE html> <html lang="en"> &l ...
- Cypress 之 URL访问
visit 作用: 访问一个远程URL. (建议:使用前设置 baseUrl) 语法: cy.visit(url) cy.visit(url, options) cy.visit(options) 使 ...
- 多进程操作-进程队列multiprocess.Queue的使用
一.ipc机制 进程通讯 管道:pipe 基于共享的内存空间 队列:pipe+锁 queue 下面拿代码来实现Queue如何使用: 案例一: from multiprocessing import Q ...
- 图数据库 Nebula Graph 的安装部署
Nebula Graph:一个开源的分布式图数据库.作为唯一能够存储万亿个带属性的节点和边的在线图数据库,Nebula Graph 不仅能够在高并发场景下满足毫秒级的低时延查询要求,还能够实现服务高可 ...
- jvm虚拟机笔记<一> 内存区域
运行时数据区域: 程序计数器:字节码的行号指示器. 虚拟机栈:为每个方法创建一个栈帧(存放方法中的局部变量,变量引用等). 本地方法栈:存放本地方法. ------------------------ ...