本文基于Flink1.9版本简述如何连接Kafka。

流式连接器

我们知道可以自己来开发Source 和 Sink ,但是一些比较基本的 Source 和 Sink 已经内置在 Flink 里。

预定义的source支持从文件、目录、socket,以及 collections 和 iterators 中读取数据。

预定义的sink支持把数据写入文件、标准输出(stdout)、标准错误输出(stderr)和 socket。

连接器可以和多种多样的第三方系统进行交互。目前支持以下系统:

  • Apache Kafka
  • Apache Cassandra(sink)
  • Amazon Kinesis Streams(source/sink)
  • Elasticsearch(sink)
  • Hadoop FileSystem (sink)
  • RabbitMQ(source/sink)
  • Apache NiFi(source/sink)
  • Twitter Streaming API(source)

请记住,在使用一种连接器时,通常需要额外的第三方组件,比如:数据存储服务器或者消息队列。

Apache Bahir 中定义了其他一些连接器

  • Apache ActiveMQ(source/sink)
  • Apache Flume(sink)
  • Redis(sink)
  • Akka (sink)
  • Netty (source)

使用connector并不是唯一可以使数据进入或者流出Flink的方式。一种常见的模式是从外部数据库或者 Web 服务查询数据得到初始数据流,然后通过 Map 或者 FlatMap 对初始数据流进行丰富和增强,这里要使用Flink的异步IO。

而向外部存储推送大量数据时会导致 I/O 瓶颈问题出现。在这种场景下,如果对数据的读操作远少于写操作,可以让外部应用从 Flink 拉取所需的数据,需要用到Flink的可查询状态接口。

本文重点介绍Apache Kafka Connector

Kafka连接器

此连接器提供对Apache Kafka提供的事件流的访问。

Flink提供特殊的Kafka连接器,用于从/向Kafka主题读取和写入数据。Flink Kafka Consumer集成了Flink的检查点机制,可提供一次性处理语义。为实现这一目标,Flink并不完全依赖Kafka 的消费者组的偏移量,而是在内部跟踪和检查这些偏移。

下表为不同版本的kafka与Flink Kafka Consumer的对应关系。

Maven Dependency Supported since Consumer and Producer Class name Kafka version
flink-connector-kafka-0.8_2.11 1.0.0 FlinkKafkaConsumer08 FlinkKafkaProducer08 0.8.x
flink-connector-kafka-0.9_2.11 1.0.0 FlinkKafkaConsumer09 FlinkKafkaProducer09 0.9.x
flink-connector-kafka-0.10_2.11 1.2.0 FlinkKafkaConsumer010 FlinkKafkaProducer010 0.10.x
flink-connector-kafka-0.11_2.11 1.4.0 FlinkKafkaConsumer011 FlinkKafkaProducer011 0.11.x
flink-connector-kafka_2.11 1.7.0 FlinkKafkaConsumer FlinkKafkaProducer >= 1.0.0

而从最新的Flink1.9.0版本开始,使用Kafka 2.2.0客户端。

下面简述使用步骤。

导入maven依赖:

<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka_2.11</artifactId>
<version>1.9.0</version>
</dependency>

安装Kafka:

可以参照 Kafka入门宝典(详细截图版)

兼容性:

从Flink 1.7开始,它不跟踪特定的Kafka主要版本。相反,它在Flink发布时跟踪最新版本的Kafka。如果您的Kafka代理版本是1.0.0或更高版本,则应使用此Kafka连接器。如果使用旧版本的Kafka(0.11,0.10,0.9或0.8),则应使用与代理版本对应的连接器。

升级Connect要注意Flink升级作业,同时

  • 在整个过程中使用Flink 1.9或更新版本。

  • 不要同时升级Flink和运营商。

  • 确保您作业中使用的Kafka Consumer和/或Kafka Producer分配了唯一标识符(uid)。

  • 使用stop with savepoint功能获取保存点(例如,使用stop --withSavepoint)。

用法:

引入依赖后,实例化新的source(FlinkKafkaConsumer)和sink(FlinkKafkaProducer)。

Kafka Consumer

先分步骤介绍构建过程,文末附Flink1.9连接Kafka完整代码。

Kafka consumer 根据版本分别叫做FlinkKafkaConsumer08 FlinkKafkaConsumer09等等

Kafka >= 1.0.0 的版本就叫FlinkKafkaConsumer。

构建FlinkKafkaConsumer

java示例代码如下:

Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
// only required for Kafka 0.8
properties.setProperty("zookeeper.connect", "localhost:2181");
properties.setProperty("group.id", "test");
DataStream<String> stream = env
.addSource(new FlinkKafkaConsumer<>("topic", new SimpleStringSchema(), properties));

scala:

val properties = new Properties()
properties.setProperty("bootstrap.servers", "localhost:9092")
// only required for Kafka 0.8
properties.setProperty("zookeeper.connect", "localhost:2181")
properties.setProperty("group.id", "test")
stream = env
.addSource(new FlinkKafkaConsumer[String]("topic", new SimpleStringSchema(), properties))
.print()

必须有的:

1.topic名称

2.用于反序列化Kafka数据的DeserializationSchema / KafkaDeserializationSchema

3.配置参数:“bootstrap.servers” “group.id” (kafka0.8还需要 “zookeeper.connect”)

配置消费起始位置

java:

final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

FlinkKafkaConsumer<String> myConsumer = new FlinkKafkaConsumer<>(...);
myConsumer.setStartFromEarliest(); // start from the earliest record possible
myConsumer.setStartFromLatest(); // start from the latest record
myConsumer.setStartFromTimestamp(...); // start from specified epoch timestamp (milliseconds)
myConsumer.setStartFromGroupOffsets(); // the default behaviour //指定位置
//Map<KafkaTopicPartition, Long> specificStartOffsets = new HashMap<>();
//specificStartOffsets.put(new KafkaTopicPartition("myTopic", 0), 23L);
//myConsumer.setStartFromSpecificOffsets(specificStartOffsets); DataStream<String> stream = env.addSource(myConsumer);

scala:

val env = StreamExecutionEnvironment.getExecutionEnvironment()

val myConsumer = new FlinkKafkaConsumer[String](...)
myConsumer.setStartFromEarliest() // start from the earliest record possible
myConsumer.setStartFromLatest() // start from the latest record
myConsumer.setStartFromTimestamp(...) // start from specified epoch timestamp (milliseconds)
myConsumer.setStartFromGroupOffsets() // the default behaviour //指定位置
//val specificStartOffsets = new java.util.HashMap[KafkaTopicPartition, java.lang.Long]()
//specificStartOffsets.put(new KafkaTopicPartition("myTopic", 0), 23L)
//myConsumer.setStartFromSpecificOffsets(specificStartOffsets) val stream = env.addSource(myConsumer)
检查点

启用Flink的检查点后,Flink Kafka Consumer将使用主题中的记录,并以一致的方式定期检查其所有Kafka偏移以及其他操作的状态。如果作业失败,Flink会将流式程序恢复到最新检查点的状态,并从存储在检查点中的偏移量开始重新使用Kafka的记录。

如果禁用了检查点,则Flink Kafka Consumer依赖于内部使用的Kafka客户端的自动定期偏移提交功能。

如果启用了检查点,则Flink Kafka Consumer将在检查点完成时提交存储在检查点状态中的偏移量。

java

final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.enableCheckpointing(5000); // checkpoint every 5000 msecs

scala

val env = StreamExecutionEnvironment.getExecutionEnvironment()
env.enableCheckpointing(5000) // checkpoint every 5000 msecs
分区发现

Flink Kafka Consumer支持发现动态创建的Kafka分区,并使用一次性保证消费它们。

还可以使用正则:

java

final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("group.id", "test"); FlinkKafkaConsumer011<String> myConsumer = new FlinkKafkaConsumer011<>(
java.util.regex.Pattern.compile("test-topic-[0-9]"),
new SimpleStringSchema(),
properties); DataStream<String> stream = env.addSource(myConsumer);
...

scala

val env = StreamExecutionEnvironment.getExecutionEnvironment()

val properties = new Properties()
properties.setProperty("bootstrap.servers", "localhost:9092")
properties.setProperty("group.id", "test") val myConsumer = new FlinkKafkaConsumer08[String](
java.util.regex.Pattern.compile("test-topic-[0-9]"),
new SimpleStringSchema,
properties) val stream = env.addSource(myConsumer)
...
时间戳和水印

在许多情况下,记录的时间戳(显式或隐式)嵌入记录本身。另外,用户可能想要周期性地或以不规则的方式发出水印。

我们可以定义好Timestamp Extractors / Watermark Emitters,通过以下方式将其传递给您的消费者:

java

Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
// only required for Kafka 0.8
properties.setProperty("zookeeper.connect", "localhost:2181");
properties.setProperty("group.id", "test"); FlinkKafkaConsumer08<String> myConsumer =
new FlinkKafkaConsumer08<>("topic", new SimpleStringSchema(), properties);
myConsumer.assignTimestampsAndWatermarks(new CustomWatermarkEmitter()); DataStream<String> stream = env
.addSource(myConsumer)
.print();

scala

val properties = new Properties()
properties.setProperty("bootstrap.servers", "localhost:9092")
// only required for Kafka 0.8
properties.setProperty("zookeeper.connect", "localhost:2181")
properties.setProperty("group.id", "test") val myConsumer = new FlinkKafkaConsumer08[String]("topic", new SimpleStringSchema(), properties)
myConsumer.assignTimestampsAndWatermarks(new CustomWatermarkEmitter())
stream = env
.addSource(myConsumer)
.print()

Kafka Producer

Kafka Producer 根据版本分别叫做FlinkProducer011 FlinkKafkaProducer010等等

Kafka >= 1.0.0 的版本就叫FlinkKafkaProducer 。

构建FlinkKafkaConsumer

java

DataStream<String> stream = ...;

FlinkKafkaProducer011<String> myProducer = new FlinkKafkaProducer011<String>(
"localhost:9092", // broker list
"my-topic", // target topic
new SimpleStringSchema()); // serialization schema // versions 0.10+ allow attaching the records' event timestamp when writing them to Kafka;
// this method is not available for earlier Kafka versions
myProducer.setWriteTimestampToKafka(true); stream.addSink(myProducer);

scala

val stream: DataStream[String] = ...

val myProducer = new FlinkKafkaProducer011[String](
"localhost:9092", // broker list
"my-topic", // target topic
new SimpleStringSchema) // serialization schema // versions 0.10+ allow attaching the records' event timestamp when writing them to Kafka;
// this method is not available for earlier Kafka versions
myProducer.setWriteTimestampToKafka(true) stream.addSink(myProducer)

需要指定broker list , topic,序列化类。

自定义分区:默认情况下,将使用FlinkFixedPartitioner将每个Flink Kafka Producer并行子任务映射到单个Kafka分区。

可以实现FlinkKafkaPartitioner类自定义分区。

Flink1.9消费Kafka完整代码:

import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import java.util.Properties; public class KafkaConsumer { public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("group.id", "test");
//构建FlinkKafkaConsumer
FlinkKafkaConsumer<String> myConsumer = new FlinkKafkaConsumer<>("topic", new SimpleStringSchema(), properties);
//指定偏移量
myConsumer.setStartFromEarliest(); DataStream<String> stream = env
.addSource(myConsumer); env.enableCheckpointing(5000);
stream.print(); env.execute("Flink Streaming Java API Skeleton");
}

项目地址:https://github.com/tree1123/flink_demo_1.9

更多Flink知识,欢迎关注实时流式计算

Flink1.9整合Kafka的更多相关文章

  1. SpringBoot整合Kafka和Storm

    前言 本篇文章主要介绍的是SpringBoot整合kafka和storm以及在这过程遇到的一些问题和解决方案. kafka和storm的相关知识 如果你对kafka和storm熟悉的话,这一段可以直接 ...

  2. SpringBoot实战(十四)之整合KafKa

    本人今天上午参考了不少博文,发现不少博文不是特别好,不是因为依赖冲突问题就是因为版本问题. 于是我结合相关的博文和案例,自己改写了下并参考了下,于是就有了这篇文章.希望能够给大家帮助,少走一些弯路. ...

  3. 基于Java+SparkStreaming整合kafka编程

    一.下载依赖jar包 具体可以参考:SparkStreaming整合kafka编程 二.创建Java工程 太简单,略. 三.实际例子 spark的安装包里面有好多例子,具体路径:spark-2.1.1 ...

  4. SpringBoot系列八:SpringBoot整合消息服务(SpringBoot 整合 ActiveMQ、SpringBoot 整合 RabbitMQ、SpringBoot 整合 Kafka)

    声明:本文来源于MLDN培训视频的课堂笔记,写在这里只是为了方便查阅. 1.概念:SpringBoot 整合消息服务 2.具体内容 对于异步消息组件在实际的应用之中会有两类: · JMS:代表作就是 ...

  5. Spark之 Spark Streaming整合kafka(并演示reduceByKeyAndWindow、updateStateByKey算子使用)

    Kafka0.8版本基于receiver接受器去接受kafka topic中的数据(并演示reduceByKeyAndWindow的使用) 依赖 <dependency> <grou ...

  6. flume 整合 kafka

    flume 整合 kafka:   flume:高可用的,高可靠的,分布式的海量日志采集.聚合和传输的系统. kafka:分布式的流数据平台.   flume 采集业务日志,发送到kafka   一. ...

  7. Trident整合Kafka

    首先编写一个打印函数KafkaPrintFunction import org.apache.storm.trident.operation.BaseFunction; import org.apac ...

  8. 整合Kafka到Spark Streaming——代码示例和挑战

    作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管.本文,Michael详细的演示了如 ...

  9. Spark学习之路(十六)—— Spark Streaming 整合 Kafka

    一.版本说明 Spark针对Kafka的不同版本,提供了两套整合方案:spark-streaming-kafka-0-8和spark-streaming-kafka-0-10,其主要区别如下:   s ...

随机推荐

  1. ASP.NET Core on K8S深入学习(4)你必须知道的Service

    本篇已加入<.NET Core on K8S学习实践系列文章索引>,可以点击查看更多容器化技术相关系列文章. 前面几篇文章我们都是使用的ClusterIP供集群内部访问,每个Pod都有一个 ...

  2. API开发之接口安全(三)----sign有效时间

    之前生成的sign和校验sign我们已经完全掌握了.但是仅仅凭借这样的sign是无法满足我们的需求的,如果一个黑客通过抓包抓到你的数据 他可以去修改你的header为这样的 body为那样的 也是可以 ...

  3. Nginx在linux下安装及简单命令

    安装环境:Centos7 创建目录及切换至目录 # mkdir /usr/local/nginx # cd /usr/local/nginx/ 下载nginx包,访问http://nginx.org下 ...

  4. LCA最近公共祖先---倍增法笔记

    先暂时把模板写出来,A几道题再来补充 此模板也是洛谷上的一道模板题 P3379 [模板]最近公共祖先(LCA) #pragma GCC optimize(2) //o2优化 #include < ...

  5. 在Win10下,python3和python2同时安装并解决pip共存问题

    前提 本文是在Windows64位系统下进行的,32位系统请下载相应版本的安装包,安装方法类似. 在Win10下,python3和python2同时安装并解决pip共存问题解决: 1.下载python ...

  6. ZooKeeper 相关概念以及使用小结

    Dubbo 通过注册中心在分布式环境中实现服务的注册与发现,而注册中心通常采用 ZooKeeper,研究注册中心相关源码绕不开 ZooKeeper,所以学习了 ZooKeeper 的基本概念以及相关 ...

  7. 详解python函数的参数

    详解python函数的参数 一.参数的定义 1.函数的参数在哪里定义 在python中定义函数的时候,函数名后面的括号里就是用来定义参数的,如果有多个参数的话,那么参数之间直接用逗号, 隔开 案列: ...

  8. HBase 系列(六)——HBase Java API 的基本使用

    一.简述 截至到目前 (2019.04),HBase 有两个主要的版本,分别是 1.x 和 2.x ,两个版本的 Java API 有所不同,1.x 中某些方法在 2.x 中被标识为 @depreca ...

  9. jar在linux上运行

    打jar后一直在linux远程的运行: nohup java -jar xxx.jar & CRT(打开时运行):(另外上传文件可使用“rz”命令,上传jar包) java -jar xxx. ...

  10. 线上调试工具 jvm-sandbox使用

    jvm-sandbox使用 1 快速安装 1.1 下载解压 # 下载最新版本的JVM-SANDBOX wget http://ompc.oss-cn-hangzhou.aliyuncs.com/jvm ...