【3】Decision tree(决策树)

是选择该分类的概率。
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
#基于最后一列的分类标签,计算给定数据集的香农熵def calcShannonEnt(dataset): num_of_entries = len(dataset) label_counts = {} for feat_vec in dataset: current_lebel = feat_vec[-1] if current_lebel not in label_counts.keys(): label_counts[current_lebel] = 0 label_counts[current_lebel] += 1 shannonEnt = 0.0 for value in label_counts.values(): prob = float(value)/num_of_entries shannonEnt -= prob*log(prob, 2) return shannonEnt |
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
# =================================# 按照给定特征划分数据集# 输入:dataset数据集;# axis指定特征,用下标表示;# value需要返回的特征的值# 返回:数据集中特征值等于value的子集# =================================def splitDataset(dataset, axis, value): retDataset = [] for featVec in dataset: if featVec[axis] == value: reducedFeatVec = featVec[0:axis] reducedFeatVec.extend(featVec[axis+1:]) retDataset.append(reducedFeatVec) return retDataset |
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
# ===============================================# 输入:# dataSet: 数据集# 输出:# bestFeature: 和原数据集熵差最大划分对应的特征的列号# ===============================================def chooseBestFeatureToSplit(dataSet): # 最后一列用于标签,剩下的才是特征 numFeatures = len(dataSet[0]) - 1 # 根据标签计算的熵 baseEntropy = calcShannonEnt(dataSet) bestInfoGain = 0.0; bestFeature = -1 # iterate over all the features for i in range(numFeatures): # 取出某个特征列的所有值 featList = [example[i] for example in dataSet] # 去重 uniqueVals = set(featList) newEntropy = 0.0 for value in uniqueVals: subDataSet = splitDataset(dataSet, i, value) prob = len(subDataSet)/float(len(dataSet)) newEntropy += prob * calcShannonEnt(subDataSet) # calculate the info gain,计算信息增益 infoGain = baseEntropy - newEntropy # 和目前最佳信息增益比较,如果更大则替换掉 if (infoGain > bestInfoGain): bestInfoGain = infoGain bestFeature = i # 返回代表某个特征的下标 return bestFeature |
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
#用于生成数据集,测试计算熵的函数def testDataset(): dataset1 = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']] labels = ['no surfacing', 'flippers'] return dataset1, labels# 用于测试的函数def test(): mydata, labels = testDataset() print chooseBestFeatureToSplit(mydata) |


|
1
2
3
4
5
6
7
8
9
10
11
12
|
# 传入分类名称组成的列表,返回出现次数最多的分类名称import operatordef majorityCnt(class_list): classCount = {} for vote in class_list: if vote not in classCount: classCount[vote] = 0 classCount[vote] += 1 sorted_class_list = sorted(classCount.iteritems(), key = operator.itemgetter(1), reverse=True) return sorted_class_list[0][0] |
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
# ===============================================# 本函数用于创建决策树# 输入:# dataSet: 数据集# labels: 划分特征标签集# 输出:# myTree: 生成的决策树# ===============================================def createTree(dataSet, labels): # 获得类别标签列表 classList = [example[-1] for example in dataSet] # 递归终止条件一:如果数据集内所有分类一致 if classList.count(classList[0]) == len(classList): return classList[0] # 递归终止条件二:如果所有特征都划分完毕,任然不能将数据集划分成仅仅包含唯一类别的分组 if len(dataSet[0]) == 1: # 只剩下一列为类别列 return majorityCnt(classList) # 返回出现次数最多的类别 # 选择最佳划分特征,返回的时候特征的下标 best_feature = chooseBestFeatureToSplit(dataSet) best_feat_label = labels[best_feature] # 创建空树 myTree = {best_feat_label:{}} # 删除划分后的特征标签 del(labels[best_feature]) # 获取最佳划分特征中全部的特征值 featValues = [example[best_feature] for example in dataSet] # 去重 uniqueVals = set(featValues) for value in uniqueVals: subLabels = labels[:] # 保存用于下一次递归 myTree[best_feat_label][value] = createTree(splitDataset(dataSet, best_feature, value), subLabels) return myTree |

|
1
2
3
4
5
6
7
8
9
10
11
12
|
# 把传入的树序列化之后存入文件def storeTree(inputTree, filename): import pickle # 用于序列化的模块 fw = open(filename, 'w') pickle.dump(inputTree, fw) fw.close()# 从文件中把存好的树反序列化出来def grabTree(filename): import pickle fr = open(filename) return pickle.load(filename) |
【3】Decision tree(决策树)的更多相关文章
- Decision tree(决策树)算法初探
0. 算法概述 决策树(decision tree)是一种基本的分类与回归方法.决策树模型呈树形结构(二分类思想的算法模型往往都是树形结构) 0x1:决策树模型的不同角度理解 在分类问题中,表示基于特 ...
- decision tree 决策树(一)
一 决策树 原理:分类决策树模型是一种描述对实例进行分类的树形结构.决策树由结点(node)和有向边(directed edge)组成.结点有两种类型:内部结点(internal node)和叶结点( ...
- Decision tree——决策树
基本流程 决策树是通过分次判断样本属性来进行划分样本类别的机器学习模型.每个树的结点选择一个最优属性来进行样本的分流,最终将样本类别划分出来. 决策树的关键就是分流时最优属性$a$的选择.使用所谓信息 ...
- OpenCV码源笔记——Decision Tree决策树
来自OpenCV2.3.1 sample/c/mushroom.cpp 1.首先读入agaricus-lepiota.data的训练样本. 样本中第一项是e或p代表有毒或无毒的标志位:其他是特征,可以 ...
- 决策树Decision Tree 及实现
Decision Tree 及实现 标签: 决策树熵信息增益分类有监督 2014-03-17 12:12 15010人阅读 评论(41) 收藏 举报 分类: Data Mining(25) Pyt ...
- 用于分类的决策树(Decision Tree)-ID3 C4.5
决策树(Decision Tree)是一种基本的分类与回归方法(ID3.C4.5和基于 Gini 的 CART 可用于分类,CART还可用于回归).决策树在分类过程中,表示的是基于特征对实例进行划分, ...
- 决策树(decision tree)
决策树是一种常见的机器学习模型.形象地说,决策树对应着我们直观上做决策的过程:经由一系列判断,得到最终决策.由此,我们引出决策树模型. 一.决策树的基本流程 决策树的跟节点包含全部样例,叶节点则对应决 ...
- (ZT)算法杂货铺——分类算法之决策树(Decision tree)
https://www.cnblogs.com/leoo2sk/archive/2010/09/19/decision-tree.html 3.1.摘要 在前面两篇文章中,分别介绍和讨论了朴素贝叶斯分 ...
- 决策树decision tree原理介绍_python sklearn建模_乳腺癌细胞分类器(推荐AAA)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- [ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest)
[ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest) 决策树 决策树算法以树状结构表示数据分类的结果.每个决策点实现一个具有离散输出的测试函数,记为分支 ...
随机推荐
- JDK1.8源码分析01之学习建议(可以延伸其他源码学习)
序言:目前有个计划就是准备看一下源码,来提升自己的技术实力.同时现在好多面试官都喜欢问源码,问你是否读过JDK源码等等? 针对如何阅读源码,也请教了我的老师.下面就先来看看老师的回答,也许会有帮助呢. ...
- Educational Codeforces Round 70 (Rated for Div. 2)
这次真的好难...... 我这个绿名蒟蒻真的要崩溃了555... 我第二题就不会写...... 暴力搜索MLE得飞起. 好像用到最短路?然而我并没有学过,看来这个知识点又要学. 后面的题目赛中都没看, ...
- java学习中碰到的疑惑和解答(一)
今天写一个接口的时候发现,接口的方法不需要写修饰符,直接写数据类型加上方法名(参数)即可通过编译. import java.util.List; import com.bjm.pojo.Flower; ...
- 第五章-处理多窗口 | Electron实战
本章主要内容: 使用JavaScript Set数据结构跟踪多个窗口 促进主进程和多个渲染器进程之间的通信 使用Node APIs检查应用程序运行在那个平台上 现在,当Fire Sale启动时,它为U ...
- 【Kubernetes 系列五】在 AWS 中使用 Kubernetes:EKS
目录 1. 概述 2. 版本 3. 预备 3.1. 操作环境 3.2. 角色权限 3.2.1. CloudFormation 完全权限 3.2.2. EKS 读写权限 3.2.3. EC2 相关权限 ...
- js五子棋游戏代码分享
HTML代码 <canvas id="game"></canvas> CSS代码 * { margin: 0; padding: 0; } #game { ...
- 使用appscan安全扫描问题以及解决办法
最近在做安全扫描,把遇到的一些问题以及一些解决方法记录下,以备后用. 扫描软件: IBM Security AppScan Standard 规则: 17441 1. 已解密的登录请求 (高) - ...
- mysql主从不同步处理过程分享
背景 8月7日15:58收到报障数据库出现不同步:数据库共四台,分别为10.255.70.11,10.255.70.12,10.255.70.13,10.255.70.14(ip为虚拟ip) 数据库 ...
- 深入解析Mysql中事务的四大隔离级别及其所解决的读现象
本文详细介绍四种事务隔离级别,并通过举例的方式说明不同的级别能解决什么样的读现象.并且介绍了在关系型数据库中不同的隔离级别的实现原理. 在DBMS中,事务保证了一个操作序列可以全部都执行或者全部都不执 ...
- 记录一次Git解决CONFLICT冲突
目录 记录一次Git解决CONFLICT冲突 1.CONFLICT产生的原因 2.Git正确的LIANGZHONG 使用流程 2.1 暂存,拉取,恢复暂存,合并(如果有冲突),提交,推送 2.2 将本 ...