1、背景

前文已经简要介绍tesseract ocr引擎的安装及基本使用,其中提到使用-l eng参数来限定语言库,可以提高识别准确率及识别效率。

本文将针对某个网站的验证码进行样本训练,形成自己的语言库,来提高验证码识别率。

2、准备工具

tesseract样本训练有一个官方流程说明,https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract#run-tesseract-for-training,不过都是英文的,个人认为这个地址适合于查找细节问题,全程看E文对大众还是有一定的困难。

具体的方法有两种:1-利用三方工具,2-完全命令行操作,三方工具主要在https://github.com/tesseract-ocr/tesseract/wiki/AddOns下载,本文将用到jTessBoxEditor这个工具,我们先给他下载到本地。

需要特别说明,这个工具是基于java虚拟机运行的,所以我们还要下载并安装一个java虚拟机,下载地址:http://download.oracle.com/otn-pub/java/jdk/8u91-b14/jdk-8u91-windows-x64.exe?AuthParam=1463733597_1161f2d895aa7606ed260b43b83d5f86

总结一下:

1、工具2 java虚拟机 Ver 1.8.0_91 64位版本 (oracle官网)

2、工具1 jtessboxeditor Ver 1.5版本 (jtessboxeditor官网),运行界面如下:

3、使用实例

1)、准备样本图片

手动刷新某网站验证码,手动或者写程序,保存了101个验证码样本文件,分别命名成:1.png,2.png,……,101.png。

该验证码有几个特点:a、定长4位,b、都是数字,c、有背景干扰,但比较简单,d、字体为红色。

为了提高识别率,首先做了一个工作就是灰度化处理,并全部转换成tif文件,分别命名成:1.tif,2.tif,……,101.tif,统一存放在d:\python\lnypcg下。

2)、合并样本图片

打开jtessboxeditor,点击Tools->Merge Tiff ,按住shift键选择前文提到的101个tif文件,并把生成的tif合并到新目录d:\python\lnypcg\new下,命名为langyp.fontyp.exp0.tif。

注意:langyp 是本人定义的语言名称,fontyp是本人定义的字体名称,后续都会用到,你可以修改成你喜欢的名字

3)、生成box文件

执行命令生成langyp.fontyp.exp0.box文件

tesseract langyp.fontyp.exp0.tif langyp.fontyp.exp0 -l eng -psm 7 batch.nochop makebox

D:\python\lnypcg\new>tesseract langyp.fontyp.exp0.tif langyp.fontyp.exp0 -l eng -psm 7 batch.nochop makebox
Tesseract Open Source OCR Engine v3.02 with Leptonica
Page 1 of 101
Page 2 of 101
Page 3 of 101
……
Page 101 of 101

D:\python\lnypcg\new>dir
驱动器 D 中的卷没有标签。
卷的序列号是 36D9-CDC7

D:\python\lnypcg\new 的目录

2016-06-03 14:37   <DIR>         .
2016-06-03 14:37   <DIR>         ..
2016-06-03 14:30             6,327 langyp.fontyp.exp0.box
2016-06-03 13:07           126,056 langyp.fontyp.exp0.tif
              2 个文件       132,383 字节
              2 个目录 24,869,994,496 可用字节

4)、修改box文件

切换到jTessBoxEditor工具的Box Editor页,点击open,打开前面的tiff文件langyp.fontyp.exp0.tif,工具会自动加载对应的box文件。

检查box数据,如下图所示,数字8被误认成字母H,手工修改H成8,并保存。

点击下图红色框的按钮,逐个核对tif文件的box数据,全部检查结束并保存。

5)、生成font_properties

执行echo命令生成font_properties。

echo fontyp 0 0 0 0 0 >font_properties

也可以手工新建一个名为font_properties的文本文件(注意该文件没有扩展名),内容为字体名fontyp,后面带5个0,分别代表字体的粗体、斜体等属性,这里全部是0

D:\python\lnypcg\new>echo fontyp 0 0 0 0 0 >font_properties

D:\python\lnypcg\new>type font_properties
fontyp 0 0 0 0 0
6)、生成训练文件

执行命令,生成langyp.fontyp.exp0.tr训练文件

tesseract langyp.fontyp.exp0.tif langyp.fontyp.exp0 -l eng -psm 7 nobatch box.train

D:\python\lnypcg\new>tesseract langyp.fontyp.exp0.tif langyp.fontyp.exp0 -l eng -psm 7 nobatch box.train
Tesseract Open Source OCR Engine v3.02 with Leptonica
Page 1 of 101
row xheight=8.66667, but median xheight = 10
APPLY_BOXES:
  Boxes read from boxfile:       4
  Found 4 good blobs.
Generated training data for 1 words
……
……
……
Page 101 of 101
row xheight=8.66667, but median xheight = 10
APPLY_BOXES:
  Boxes read from boxfile:       4
  Found 4 good blobs.
Generated training data for 1 words

D:\python\lnypcg\new 的目录

2016-06-03 16:34   <DIR>         .
2016-06-03 16:34   <DIR>         ..
2016-06-03 16:05               16 font_properties
2016-06-03 14:30             6,327 langyp.fontyp.exp0.box
2016-06-03 13:07           126,056 langyp.fontyp.exp0.tif
2016-06-03 16:20           618,844 langyp.fontyp.exp0.tr
2016-06-03 16:20               202 langyp.fontyp.exp0.txt
              5 个文件       751,445 字节
              2 个目录 24,869,101,568 可用字节

7)、生成字符集文件
执行命令,生成名为unicharset的字符集文件。

unicharset_extractor langyp.fontyp.exp0.box

D:\python\lnypcg\new>unicharset_extractor langyp.fontyp.exp0.box
Extracting unicharset from langyp.fontyp.exp0.box
Wrote unicharset file ./unicharset.

D:\python\lnypcg\new>dir
驱动器 D 中的卷没有标签。
卷的序列号是 36D9-CDC7

D:\python\lnypcg\new 的目录

2016-06-03 16:41   <DIR>         .
2016-06-03 16:41   <DIR>         ..
2016-06-03 16:05               16 font_properties
2016-06-03 14:30             6,327 langyp.fontyp.exp0.box
2016-06-03 13:07           126,056 langyp.fontyp.exp0.tif
2016-06-03 16:20           618,844 langyp.fontyp.exp0.tr
2016-06-03 16:20               202 langyp.fontyp.exp0.txt
2016-06-03 16:41               712 unicharset
              6 个文件       752,157 字节
              2 个目录 24,869,171,200 可用字节

8)、生成shape文件

执行命令,生成shape文件

shapeclustering -F font_properties -U unicharset -O langyp.unicharset langyp.fontyp.exp0.tr

D:\python\lnypcg\new>shapeclustering -F font_properties -U unicharset -O langyp.unicharset langyp.fontyp.exp0.tr
Reading langyp.fontyp.exp0.tr ...
Building master shape table
Computing shape distances...
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0
Stopped with 0 merged, min dist 999.000000
Computing shape distances...
Stopped with 0 merged, min dist 999.000000
Computing shape distances...
Stopped with 0 merged, min dist 999.000000
Computing shape distances... 0 1 2 3 4 5 6 7 8 9 10
Stopped with 0 merged, min dist 0.057803
Master shape_table:Number of shapes = 11 max unichars = 1 number with multiple unichars = 0

D:\python\lnypcg\new>dir
驱动器 D 中的卷没有标签。
卷的序列号是 36D9-CDC7

D:\python\lnypcg\new 的目录

2016-06-03 17:24   <DIR>         .
2016-06-03 17:24   <DIR>         ..
2016-06-03 17:20               19 font_properties
2016-06-03 14:30             6,327 langyp.fontyp.exp0.box
2016-06-03 13:07           126,056 langyp.fontyp.exp0.tif
2016-06-03 17:23           618,844 langyp.fontyp.exp0.tr
2016-06-03 17:23               202 langyp.fontyp.exp0.txt
2016-06-03 17:24               723 langyp.unicharset
2016-06-03 17:24               202 shapetable
2016-06-03 17:24               712 unicharset
              8 个文件       753,085 字节
              2 个目录 24,868,278,272 可用字节

9)、生成聚集字符特征文件

执行命令,生成3个特征字符文件,unicharset、inttemp、pffmtable

mftraining -F font_properties -U unicharset -O langyp.unicharset langyp.fontyp.exp0.tr

D:\python\lnypcg\new>mftraining -F font_properties -U unicharset -O langyp.unicharset langyp.fontyp.exp0.tr
Read shape table shapetable of 11 shapes
Reading langyp.fontyp.exp0.tr ...
Done!
10)、生成字符正常化特征文件

执行命令,生成正常化特征文件normproto。

cntraining langyp.fontyp.exp0.tr

D:\python\lnypcg\new>cntraining langyp.fontyp.exp0.tr
Reading langyp.fontyp.exp0.tr ...
Clustering ...
11)、更名

执行命令,把步骤9,步骤10生成的特征文件进行更名。

rename normproto fontyp.normprotorename inttemp fontyp.inttemprename pffmtable fontyp.pffmtable rename unicharset fontyp.unicharsetrename shapetable fontyp.shapetable

D:\python\lnypcg\new>rename normproto fontyp.normproto

D:\python\lnypcg\new>rename inttemp fontyp.inttemp

D:\python\lnypcg\new>rename pffmtable fontyp.pffmtable

D:\python\lnypcg\new>rename unicharset fontyp.unicharset

D:\python\lnypcg\new>rename shapetable fontyp.shapetable

12)、合并训练文件

执行命令,生成fontyp.traineddata文件。

combine_tessdata fontyp.

注意:

a、fontyp.traineddata文件最终要拷贝tesseract安装目录的tessdata目录下,才能被tesseract找到。

b、命令行最后必须带一个点。

c、执行结果中,1,3,4,5,13这几行必须有数值,才代表命令执行成功。

D:\python\lnypcg\new>combine_tessdata fontyp.
Combining tessdata files
TessdataManager combined tesseract data files.
Offset for type 0 is -1
Offset for type 1 is 140
Offset for type 2 is -1
Offset for type 3 is 852
Offset for type 4 is 137760
Offset for type 5 is 137850
Offset for type 6 is -1
Offset for type 7 is -1
Offset for type 8 is -1
Offset for type 9 is -1
Offset for type 10 is -1
Offset for type 11 is -1
Offset for type 12 is -1
Offset for type 13 is 139352
Offset for type 14 is -1
Offset for type 15 is -1
Offset for type 16 is -1

13)测试使用

譬如前文的28.tif中8被误认为字母S,用新的字体看是否还出错。

D:\python\lnypcg>tesseract 28.tif output -l eng -psm 7
Tesseract Open Source OCR Engine v3.02 with Leptonica

D:\python\lnypcg>type output.txt
S094
#1调用默认的eng语言,8被识别成S

D:\python\lnypcg>tesseract 28.tif output -l fontyp -psm 7
Error opening data file C:\Program Files (x86)\Tesseract-OCR\tessdata/fontyp.traineddata
Please make sure the TESSDATA_PREFIX environment variable is set to the parent directory of your "tessdata" directory.
Failed loading language 'fontyp'
Tesseract couldn't load any languages!
Could not initialize tesseract.
#2条用新的fontyp语言,tesseract找不到fontyp语言。

D:\python\lnypcg>copy .\new\fontyp.traineddata "C:\Program Files (x86)\Tesseract-OCR\tessdata"
已复制         1 个文件。
#3复制fontyp.traineddata到tesseract的安装目录的tessdata子目录下
D:\python\lnypcg>tesseract 28.tif output -l fontyp -psm 7
Tesseract Open Source OCR Engine v3.02 with Leptonica

D:\python\lnypcg>type output.txt
8094
#使用fontyp语言成功识别8094

4、总结:

Anyway,jtessboxeditor 工具其实是一个基本成型的三方样本训练工具,它的功能就是自动执行上述脚本命令,但是在实际使用中,还存在不够完善的地方,譬如不能加psm参数,生成shape时经常程序异常崩溃,所以本文操作还是以命令行为主。

tesseract是一个非常强大的ocr引擎,尤其是做了针对性训练之后,验证码识别率几乎可以达到95%以上,再在程序中增加一些判断机制,基本上可以满足爬虫自动登陆需求了,回头写一个某东的自动识别验证码的爬虫程序。

把前文提的简化一下,综合成如下步骤列表:

1、合并图片
2、生成box文件
tesseract langyp.fontyp.exp0.tif langyp.fontyp.exp0 -l eng -psm 7 batch.nochop makebox
3、修改box文件
4、生成font_properties
echo fontyp 0 0 0 0 0 >font_properties
5、生成训练文件
tesseract langyp.fontyp.exp0.tif langyp.fontyp.exp0 -l eng -psm 7 nobatch box.train
6、生成字符集文件
unicharset_extractor langyp.fontyp.exp0.box
7、生成shape文件
shapeclustering -F font_properties -U unicharset -O langyp.unicharset langyp.fontyp.exp0.tr
8、生成聚集字符特征文件
mftraining -F font_properties -U unicharset -O langyp.unicharset langyp.fontyp.exp0.tr
9、生成字符正常化特征文件
cntraining langyp.fontyp.exp0.tr
10、更名
rename normproto fontyp.normproto
rename inttemp fontyp.inttemp
rename pffmtable fontyp.pffmtable
rename unicharset fontyp.unicharset
rename shapetable fontyp.shapetable
11、合并训练文件,生成fontyp.traineddata
combine_tessdata fontyp.

![复制代码](https://common.cnblogs.com/images/copycode.gif

更多精彩内容请关注微信公众号

jTessBoxEditor训练识别库的更多相关文章

  1. Tesseract-OCR 自动生成识别库的批处理

    用Tesseract-OCR做识别库的时候,生成字典非常麻烦,就写了一个批处理,用来生成字典还是蛮方便的,希望大家有用,该批处理已经自动生成font_properties文件,各位无需手动创建 下载地 ...

  2. Python的开源人脸识别库:离线识别率高达99.38%

    Python的开源人脸识别库:离线识别率高达99.38%   github源码:https://github.com/ageitgey/face_recognition#face-recognitio ...

  3. Java 验证码识别库 Tess4j 学习

    Java 验证码识别库 Tess4j 学习 [在用java的Jsoup做爬虫爬取数据时遇到了验证码识别的问题(基于maven),找了网上挺多的资料,发现Tess4j可以自动识别验证码,在这里简单记录下 ...

  4. 开源OCR识别库-Tesseract介绍

    最近在github上面看到一个开源的ocr文字识别库,感觉效果还可以,所以在这里介绍一下,这个项目的原地址在:https://github.com/tesseract-ocr/tesseract. t ...

  5. Python的开源人脸识别库:离线识别率高达99.38%(附源码)

    Python的开源人脸识别库:离线识别率高达99.38%(附源码) 转https://cloud.tencent.com/developer/article/1359073   11.11 智慧上云 ...

  6. face_recognition开源人脸识别库:离线识别率高达99.38%

    基于Python的开源人脸识别库:离线识别率高达99.38%——新开源的用了一下感受一下 原创 2017年07月28日 21:25:28 标签: 人脸识别 / 人脸自动定位 / 人脸识别开源库 / f ...

  7. [深度学习工具]·极简安装Dlib人脸识别库

    [深度学习工具]·极简安装Dlib人脸识别库 Dlib介绍 Dlib是一个现代化的C ++工具箱,其中包含用于在C ++中创建复杂软件以解决实际问题的机器学习算法和工具.它广泛应用于工业界和学术界,包 ...

  8. Tensorflow Mask-RCNN训练识别箱子的模型运行结果(练习)

    Tensorflow Mask-RCNN训练识别箱子的模型

  9. winds dlib人脸检测与识别库

    在人脸检测与人脸识别库中dlib库所谓是非常好的了.检测效果非常ok,下面我们来了解一下这个神奇的库吧! 第一步我们首先学会安装:dlib ,winds+pytho3.6.5  Windows不支持p ...

随机推荐

  1. 11-《Node.js开发指南》-模块和包

    什么是模块? 一个node.js文件就是一个模块,这个文件可能是js代码,json或者编译过的C/C++扩展 创建及加载模块 //a.js var name; exports.setName = fu ...

  2. 你真的理解Java 注解吗?

    你真的理解Java 注解吗? 1.什么是注解? 官方解释: Java 注解用于为 Java 代码提供元数据.作为元数据,注解不直接影响你的代码执行,但也有一些类型的注解实际上可以用于这一目的.Java ...

  3. pip命令详解

    使用详解 1.pip安装软件 # pip install SomePackage 2.pip查看已安装的软件 # pip show --files SomePackage 3.pip检查哪些软件需要更 ...

  4. 【Spring JDBC】NamedParameterJdbcTemplate(四)

    一.什么是具名参数 在经典的 JDBC 用法中, SQL 参数是用占位符 ? 表示,并且受到位置的限制.定位参数的问题在于, 一旦参数的顺序发生变化, 就必须改变参数绑定.在 Spring JDBC ...

  5. Notepad++ 异常崩溃 未保存的new *文件列表没了怎么办?

    今天就遇到这种问题了,把之前写的临时代码拷贝到Notepad++,不知道啥时候脑袋一抽风强迫症犯了就把所有临时代码给未保存关闭了,然后懊恼不已,百度了一下解决办法,一下就搜到了. Notepad++是 ...

  6. angularjs中directive指令与component组件有什么区别?

     壹 ❀ 引 我在前面花了两篇博客分别系统化介绍了angularjs中的directive指令与component组件,当然directive也能实现组件这点毋庸置疑.在了解完两者后,即便我们知道co ...

  7. Java描述设计模式(13):迭代器模式

    本文源码:GitHub·点这里 || GitEE·点这里 一.迭代器模式 1.基础概念 迭代器模式又叫游标模式,是对象的行为模式.迭代器模式可以顺序地访问一个聚集中的元素而不必暴露聚集的内部表象. 2 ...

  8. C#构造函数、属性的应用

    using System; using System.Collections.Generic; using System.Text; namespace test { class Program { ...

  9. python爬虫网页解析之parsel模块

    08.06自我总结 python爬虫网页解析之parsel模块 一.parsel模块安装 官网链接https://pypi.org/project/parsel/1.0.2/ pip install ...

  10. Use a Multiline Editor for String Properties 对字符串属性使用多行编辑器

    In this lesson, you will learn how to display a multiline editor for string properties. For this pur ...