io.netty.buffer包中是netty ByteBuf的实现。ByteBuf是一个二进制缓冲区的抽象接口,它的功能有:

  • 可以随机访问、顺序访问。
  • 支持基本数据类型(byte, short, int, long, float, double)的序列化和反序列化。
  • 不限制底层原始的数据类型,可以是byte[], NIO Buffer, String, IO Stream, 直接内(C语言中可以表示为指向一块内置起始地址的指针void*, 内存的长度), 等等。

为什么需要ByteBuf

    缓冲区的使用范围非常广泛:I/O操作,序列化/反序列化,编码转换,压缩/解压,加/解密等所有需要使用byte[]的场景。

    有些场景需要需要能够快速地创建和销毁缓冲区,如:高并发的服务器,处理请求、返回响应的时时候需要大量且高频地创建,销毁缓冲区。

    有些场景不能确定需要多大的缓冲区,如: 从数据流中分离出一条消息,消息的长度不确定,只知道最大长度。假如消息的最大长度是64KB,而消息的平均长度只有4KB, 如果每次创建64KB的缓冲区就太浪费了。如果缓冲区能够在需要的时候自动且高效地增减容量,就完美了。

    在所有的场景中都涉及到频繁的数据copy,这要求缓冲区数据copy的性能要尽量高。如果有可能,尽量减少数据copy。

    ByteBuf就是为解决以上问题而设计的。

核心概念

如下所示

|  discardable bytes | readable bytes |  writable bytes  |
0 readerIndex writerIndex capacity
  • capacity: 缓冲区的容量。
  • readerIndex: 当前读的位置。可以使用readerIndex()和readerIndex(int)方法获取、设置readerIndex值。每次调用readXXX方法都会导致readerIndex向writerIndex移动,直到等于writerIndex为止。
  • writerIndex: 写的当前位置。可以使用writerIndex()和writerIndex(int)方法获取、设置writeIndex的值。每次调用writeXXX方法都会导致writeIndex向capacity移动,直到等于capacity为止。
  • discardable bytes: 可丢弃的数据。0--readerIndex之间的数据, 长度是readerIndex - 0,调用discardReadBytes会丢弃这部分数据,把readerIndex--writerIndex之间的数据移动到ByteBuf的开始位置(0), ByteBuf会变成如下所示的样子:
       |   readable bytes  |  writable bytes  |
readerIndex(0) writerIndex capacity
  • readable bytes: 可读数据。 readerIndex--writerIndex之间的数据,长度是writerInex - readerIndex。可以调用readableBytes()方法得到它的长度。
  • writeable bytes: 可写的空间。长度是capacity - writerIndex。也可以认为它是ByteBuf的剩余空间。

核心能力

对二进制数据的读写是ByteBuf的核心能力。它提供两种读写方式:

  • 随机读写: getXXX(int), setXXX(int, ...)。不会对readerIndex和writerIndex产生影响,范围是(0,capacity]。
  • 顺序读写: readXXX, 增加readerIndex的值,范围是(readerIndex, writerIndex]。 writeXXX,增加writerIndex值,范围是(writerIndex, capacity]。

ByteBuf为了方便使用,提供了一些基本数据类型(unsigned表示无符号类型)的读写支持:

数据类型 长度(Byte)
byte, unsignedByte 1
short, unsignedShort 2
char 2
medium, unsignedMedium 3
int, unsignedInt 4
long 8
float 4
double 8

对这些基本数据类型的读写涉及到了字节须的问题,ByteBuf支持两种字节序,使用java.nio.ByteOrder中的定义,默认的字节序是BIG_ENDIAN, 这个也是网络字节序。

此外还提供了对byte[]类型及可以当成byte[]使用的数据类型的支持, 方法名都是:getBytes,setBytes, readBytes, writeBytes。

  • byte[]
  • ByteBuf
  • ByteBuffer
  • GatheringByteChannel
  • InputStread, OutputStream

内存管理

内存管理分为两个部分:内存分配,内存释放。

ByteBufAllocator是内存分配的接口,它有两个具体实现:UnpooledByteBufAllocator, PooledByteBufAllocator。

UnpooledByteBufAllocator是JVM内存分配接口的简单封装。

PooledByteBufAllocator在JVM内存分配的基础上实现了一套独立的内存分配算法。

内存释放的关键是如何判定对象死亡,ByteBuf继承了ReferenceCounted接口,使用引用计数的方式判定对象死亡。

PooledByteBufAllocator中高效的内存管理算法是ByteBuf的性能基础,理解了它的算法是理解ByteBuf的关键。

体系结构

graph TD;
B[ByteBuf]-->AB[AbstractByteBuf];
B-->SB[SwappedByteBuf];
B-->WB[WrappedByteBuf];
AB[AbstractByteBuf]-->ARCB[AbstractReferenceCountedByteBuf];
ARCB-->CB[CompositeByteBuf<br>FixedCompositeByteBuf];
ARCB-->PB[PooledByteBuf<T>];
ARCB-->UBB[UnpooledDirectByteBuf<br>UnpooledHeapByteBuf<br>UnpooledUnsafeDirectByteBuf<br>UnpooledUnsafeHeapByteBuf<br>UnpooledUnsafeNoCleanerDirectByteBuf];
ARCB-->ROBB[ReadOnlyByteBufferBuf];
PB[PooledByteBuf<T>]-->PDB[PooledDirectByteBuf];
PB-->PUDB[PooledUnsafeDirectByteBuf];
PB-->PHB[PooledHeapByteBuf];
PHB-->PUHB[PooledUnsafeHeapByteBuf];

上图是ByteBuf体系结构中主要的类和接口。主要分为三大类:

  • AbstractReferenceCountedByteBuf及其子类。这个类别是是ByteBuf中最重要的部分,它分为4个小类别:

CompositeByteBuf, FixedCompositeByteBuf: 把不同的ByteBuf组合成一个ByteBuf。

PooledByteBuf:实现了自定义内存管理算法的。

UnpooledXXXX: 直接使用JVM内存管理能力。

ReadOnlyByteBufferBuf: 只读的。

  • SwappedByteBuf: 用来转换ByteBuf的字节序。
  • WrappedByteBuf: 用来包装另一个ByteBuf。

工具

有两个工具类帮助开发者使用ByteBuf:

  • ByteBufUtil: 这个类中创建好了默认的ByteBufAllocator,可以直接拿来用。还有一些操作ByteBuf常用的方法。
  • Unpooled: 这个类是针对UnpooledXXXByteBuf的工具。

用法

创建ByteBufAllocator

    使用ByteBufUtil.DEFAULT_ALLOCATOR得到ByteBufAllocator实例。这个实例可能是UnpooledByteBufAllocator,也可能是PooledByteBufAllocator类型,这取决于io.netty.allocator.type属性的设置。默认是unpooled,UnpooledByteBufAllocator类型。如果想要PooledByteBufAllocator类型,把这个属性的值设置成pooled:

    java -Dio.netty.allocator.type=pooled,或者System.setProperty("io.netty.allocator.type", "pooled")

    

创建ByteBuf

    netty不建议直接创建创建ByteBuf实例,推荐使用ByteBufAllocator创建ByteBuf实例,或者使用Unpooled静态方法。

    ByteBufAllocator有7种方法用于创建ByteBuf实例:

方法名 特性
buffer 使用可能是JVM堆内存或直接内存,取决于具体的实现
ioBuffer 如果可以的话优先使用直接内存
heapBuffer 使用堆内存
directBuffer 使用直接内存
CompositeByteBuf 使用可能是JVM堆内存或直接内存,取决于具体的实现
compositeHeapBuffer 使用堆内存
compositeDirectBuffer 使用堆内存

Unpooled创建ByteBuf实例的方法有2两种:

方法名 特性
buffer 使用堆内存
directBuffer 使用直接内存

包装成ByteBuf

Unpooled提供了一系列的wrappedBuffer方法,把一些数据类型包装成一个ByteBuf, 这些数据类型有:

  • byte[]。
  • ByteBuffer。
  • 另一个的ByteBuf中的可读数据。

wrappedBuffer方法还可以把byte[].., ByteBuffer.., ByteBuf..包装成一个CompositeByteBuf。

数据读写

数据读写是ByteBuf的基本功能,前面已经讲过,相关方法是: getXXX, readXXX, setXXX, writeXXX。

netty源码解析(4.0)-21 ByteBuf的设计原理的更多相关文章

  1. netty源码解析(4.0)-27 ByteBuf内存池:PoolArena-PoolThreadCache

    前面两章分析的PoolChunk和PoolSubpage,从功能上来说已经可以直接拿来用了.但直接使用这个两个类管理内存在高频分配/释放内存场景下会有性能问题,PoolChunk分配内存时算法复杂度最 ...

  2. netty源码解析(4.0)-28 ByteBuf内存池:PooledByteBufAllocator-把一切组装起来

    PooledByteBufAllocator负责初始化PoolArena(PA)和PoolThreadCache(PTC).它提供了一系列的接口,用来创建使用堆内存或直接内存的PooledByteBu ...

  3. netty源码解析(4.0)-26 ByteBuf内存池:PoolArena-PoolSubpage

    PoolChunk用来分配大于或等于一个page的内存,如果需要小于一个page的内存,需要先从PoolChunk中分配一个page,然后再把一个page切割成多个子页-subpage,最后把内存以s ...

  4. netty源码解析(4.0)-29 Future模式的实现

    Future模式是一个重要的异步并发模式,在JDK有实现.但JDK实现的Future模式功能比较简单,使用起来比较复杂.Netty在JDK Future基础上,加强了Future的能力,具体体现在: ...

  5. Netty源码分析第5章(ByteBuf)---->第2节: ByteBuf的分类

    Netty源码分析第五章: ByteBuf 第二节: ByteBuf的分类 上一小节简单介绍了AbstractByteBuf这个抽象类, 这一小节对其子类的分类做一个简单的介绍 ByteBuf根据不同 ...

  6. Netty源码分析第5章(ByteBuf)---->第1节: AbstractByteBuf

    Netty源码分析第五章: ByteBuf 概述: 熟悉Nio的小伙伴应该对jdk底层byteBuffer不会陌生, 也就是字节缓冲区, 主要用于对网络底层io进行读写, 当channel中有数据时, ...

  7. Netty源码分析第5章(ByteBuf)---->第3节: 缓冲区分配器

    Netty源码分析第五章: ByteBuf 第三节: 缓冲区分配器 缓冲区分配器, 顾明思议就是分配缓冲区的工具, 在netty中, 缓冲区分配器的顶级抽象是接口ByteBufAllocator, 里 ...

  8. Netty源码分析第5章(ByteBuf)---->第4节: PooledByteBufAllocator简述

    Netty源码分析第五章: ByteBuf 第四节: PooledByteBufAllocator简述 上一小节简单介绍了ByteBufAllocator以及其子类UnPooledByteBufAll ...

  9. Netty源码分析第5章(ByteBuf)---->第5节: directArena分配缓冲区概述

    Netty源码分析第五章: ByteBuf 第五节: directArena分配缓冲区概述 上一小节简单分析了PooledByteBufAllocator中, 线程局部缓存和arean的相关逻辑, 这 ...

随机推荐

  1. C#通过WMI获取硬件信息

    有时候需要得到硬件信息绑定用户登录 代码如下: private string GetProcessSerialNumber() { try { ManagementObjectCollection P ...

  2. ansible部署Tomcat

    首先要准备的环境就是免密登录 这是要在ansible-playbook中所写的内容---- hosts: tomcat tasks:   - name: 关闭防火墙     service: name ...

  3. C# 中获取一个目录下的目录与文件

    //获得目录下所有文件和子目录使用DirectoryInfo类的GetFileSystemInfos()方法. //获得目录下所有目录 string[] dirs = Directory.GetDir ...

  4. 一起学Vue之计算属性和侦听器

    概述 在Vue开发中,模板内的表达式非常便利,但是设计它们的初衷是用于简单运算的.在模板中放入太多的逻辑会让模板过重且难以维护.当你想要在模板中多次引用相同表达式时,就会更加难以处理.所以,对于任何复 ...

  5. git提交时忽略指定文件

    git提交时忽略指定文件 我们在项目开发过程中经常用到git来管理自己的项目,使用git版本控制进行多人协作开发具有许多优势,这里就不一一阐述了,有兴趣的同学可以自己去查找资料进行系统的学习.而本篇文 ...

  6. css3 @page

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  7. 软帝学院:一万字的Java基础知识总结大全(实用)

    Java基础总结大全(实用) 一.基础知识: 1.JVM.JRE和JDK的区别: JVM(Java Virtual Machine):java虚拟机,用于保证java的跨平台的特性. java语言是跨 ...

  8. eclipse 的安装

    打开eclipse官网 https://www.eclipse.org/ 点击此处 再点击 最后点击下载 然后一路下一步安装即可 添加中文语言包 打开eclipse官网 https://www.ecl ...

  9. 集合系列 Map(十二):HashMap

    HashMap 是 Map 基于哈希散列算法的实现,其在 JDK1.7 中采用了数组+链表的数据结构.在 JDK1.8 中为了提高查询效率,采用了数组+链表+红黑树的数据结构.本文所有讲解均基于 JD ...

  10. 使用pycharm或idea提交项目到github

    pycharm和idea的操作方式几乎一样,所以下面就以pycharm为例来介绍. 安装git https://git-scm.com/download/win 官网,下载慢,需翻墙 https:// ...