Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.

Example 1:

Input: [[1,1],[2,2],[3,3]]
Output: 3
Explanation:
^
|
| o
| o
| o
+------------->
0 1 2 3 4

Example 2:

Input: [[1,1],[3,2],[5,3],[4,1],[2,3],[1,4]]
Output: 4
Explanation:
^
|
| o
| o o
| o
| o o
+------------------->
0 1 2 3 4 5 6

NOTE: input types have been changed on April 15, 2019. Please reset to default code definition to get new method signature.

题意:

给定二维平面上一些点,问最多多少个点共线

Solution1: HashMap

解本题需要的背景知识:【Math Fact】All the points in a line share the same slop.

The question is like standing at points[i],  find max number of points in points[j], such that points[i] and points[j] are on the same line.

1. If points[i], points[j] 's coordinator are the same, they are overlapping.

2. Otherwise, they are nonoverlapping. Based on the fact that "All the points in a line share the same slop", we use the greatest common divisor(最大公约数) to get the lowest term(最简化) for points[i], points[j]'s coordinator.  即[2,4] 和[4,8], 我们用求最大公约数的方式,将其斜率化成最简形式: 1/2 和 1/2

3. We use Map<x, Map<y, occurance>> map to get such slop from x and y's occurance. Then we know how many non-overlapping points in such line.

code

 public class MaxPointsonaLine {
// 已经给定的Point class
class Point {
int x;
int y; Point() {
x = 0;
y = 0;
} Point(int a, int b) {
x = a;
y = b;
}
} public int maxPoints(Point[] points) {
int result = 0;
Map<Integer, Map<Integer, Integer>> map = new HashMap<>();
// standing at points[i]
for (int i = 0; i < points.length; i++) {
map.clear();
int overlapping = 0;
int nonoverlapping = 0;
// checking points[j]
for (int j = i + 1; j < points.length; j++) {
int x = points[j].x - points[i].x;
int y = points[j].y - points[i].y;
if (x == 0 && y == 0) {
overlapping++;
continue;
}
int gcd = generateGCD(x, y);
if (gcd != 0) {
x = x / gcd;
y = y / gcd;
}
if (map.containsKey(x)) {
if (map.get(x).containsKey(y)) {
map.get(x).put(y, map.get(x).get(y) + 1);
} else {
map.get(x).put(y, 1);
}
} else {
Map<Integer, Integer> m = new HashMap<>();
m.put(y, 1);
map.put(x, m);
}
overlapping = Math.max(nonoverlapping, map.get(x).get(y));
}
result = Math.max(result, overlapping + nonoverlapping + 1);
}
return result;
} public int generateGCD(int a, int b) {
return (b == 0) ? a : generateGCD(b, a % b);
}
}

[leetcode]149. Max Points on a Line多点共线的更多相关文章

  1. [LeetCode] 149. Max Points on a Line 共线点个数

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  2. Java for LeetCode 149 Max Points on a Line

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  3. leetcode 149. Max Points on a Line --------- java

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  4. leetcode[149]Max Points on a Line

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  5. 【LeetCode】149. Max Points on a Line

    Max Points on a Line Given n points on a 2D plane, find the maximum number of points that lie on the ...

  6. 【leetcode】Max Points on a Line

    Max Points on a Line 题目描述: Given n points on a 2D plane, find the maximum number of points that lie ...

  7. [LeetCode OJ] Max Points on a Line

    Max Points on a Line Submission Details 27 / 27 test cases passed. Status: Accepted Runtime: 472 ms ...

  8. 【LeetCode】149. Max Points on a Line 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 字典+最大公约数 日期 题目地址:https://l ...

  9. 149. Max Points on a Line

    题目: Given n points on a 2D plane, find the maximum number of points that lie on the same straight li ...

随机推荐

  1. CentOS 7修改系统时间及硬件时间

    转载于:https://www.cnblogs.com/LouisZJ/p/8554991.html [root@nginx ~]# timedatectl --help timedatectl [O ...

  2. 关于Jupyter Notebook快捷操作

    Jupyter Notebook 的快捷键 Jupyter Notebook 有两种键盘输入模式.编辑模式,允许你往单元中键入代码或文本:这时的单元框线是绿色的.命令模式,键盘输入运行程序命令:这时的 ...

  3. localStorage sessionStorage 用法

    sessionStorage.getItem('key') // 获取 sessionStorage.setItem('key','value') //设置 sessionStorage.remove ...

  4. 网络通信协议tcp,udp区别

    1 网络通信协议 Tcp udp的区别 重点(*****) Tcp三次握手四次挥手(******) udp客户端多人聊天 import socket udp_client = socket.socke ...

  5. charles抓不到APP内的某些接口-解决部分汇总

    首先,让我哭会,我竟然自己解决了问题.网上查的解决办法都试过了就是不管用,也问过前辈,就是没招. 果然,自立自强,勇者不息. Top1 问题:charles抓不到接口? 现象:web端的网络请求OK, ...

  6. leetCode104. 二叉树的最大深度

    给定一个二叉树,找出其最大深度. 二叉树的深度为根节点到最远叶子节点的最长路径上的节点数. 说明: 叶子节点是指没有子节点的节点. 示例:给定二叉树 [3,9,20,null,null,15,7], ...

  7. 学习笔记:python3,PIP安装第三方库(2017)

    https://pip.pypa.io/en/latest/quickstart/ pip的使用文档 http://www.lfd.uci.edu/~gohlke/pythonlibs/   .whl ...

  8. LeetCode 106. Construct Binary Tree from Inorder and Postorder Traversal 由中序和后序遍历建立二叉树 C++

    Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  9. [SQL]批量修改存储过程视图

    存储过程与视图适用 ); )='w_sp_Sms_ExpeOrKeepEmpl'; DECLARE C_TABLES CURSOR FAST_FORWARD FOR SELECT NAME FROM ...

  10. mongodb 多表查询

    今天有一个业务涉及到mongodb的多表查询,大体记录下语句结构 db.table_a.aggregate([ {$lookup:{from:"table_b",localFiel ...