已知 $r_1=0,r_{100}=0.85,(r_k$ 表示投 k 次投中的概率.)
求证:(1)是否存在$n_0$使得$r_{n_0}=0.5$

(2)是否存在$n_1$使得$r_{n_1}=0.8$

分析:假设$r_1<0.8,r_2<0.8\cdots,r_{n_0}<0.8,r_{n_1}\ge0.8$ (第一次很重要)
$r_{n_0}=\dfrac{m_0}{n_0}<0.8,(\textbf{其中} m_0 \textbf{表示前} n_0 次投球中投中的次数),故5m_0<4n_0$
得$5(m_0+1)\le4(n_0+1)$,即$\dfrac{m_0+1}{n_0+1}\le\dfrac{4}{5}$
$\therefore \textbf{一定存在}r_{n_1}=0.8,(\textbf{其中}n_1=n_{0}+1),\textbf{否则},r_{n_0+1}\textbf{无论是}$

$\dfrac{m_0}{n_0+1}\textbf{还是}\dfrac{m_0+1}{n_0+1}\textbf{都小于}\dfrac{4}{5}\textbf{与}r_{n_1}\ge0.8\textbf{矛盾}.$

MT【268】投篮第一次很重要的更多相关文章

  1. MT【267】第一次很重要

    \begin{equation*}\textbf{已知}x_1,x_2<\pi,x_{n+1}=x_n+\left\{ \begin{aligned} sin x_n &,x_n> ...

  2. .NET HttpWebRequest/WebClient网络请求第一次很慢解决方案

    不使用代理: <?xml version="1.0" encoding="utf-8" ?> <configuration> <s ...

  3. MT【123】利用第一次的技巧

    已知 \(r_1=0,r_{100}=0.85,(r_k\) 表示投 k 次投中的概率.) 求证:(1)是否存在\(n_0\)使得\(r_{n_0}=0.5\) (2)是否存在\(n_1\)使得\(r ...

  4. 32岁白发菜鸟拿2.6万年薪苦熬10年 NBA首秀便惊艳世人 科比书豪纷纷为他点赞

    这是一场普通的常规赛——斯台普斯球馆,湖人的赛季第81场.比赛的结果也没什么意外:客场作战的火箭106-99带走胜利.然而,这一场的斯台普斯却成了欢乐的海洋,现场甚至喊出了MVP的呼声,这份赞誉,送给 ...

  5. 如何让VS2013编写的程序

    总体分c++程序和c#程序 1.c++程序 这个用C++编写的程序可以经过设置后在XP下运行,主要的“平台工具集”里修改就可以. 额外说明:(1)程序必须为Dotnet 4.0及以下版本.(XP只支持 ...

  6. mac osx 启动wireshark闪退

    wireshark启动会提示安装x11 去x11地址安装后 启动还是闪退 原来是姿势不对 这样才行~~ 这一步 这个路径一定要对!路径一定要对!路径一定要对! 然后报错不用管它,如果没反应了,就继续等 ...

  7. [ZooKeeper.net] 1 模仿dubbo实现一个简要的http服务的注册 基于webapi

    今天来试着模仿下dubbo实现一个简要的http服务的注册,虽说是模仿不过是很廉价的那种,只是模仿了一点点点...... 先放上demo目录结构: 开头还是把ZooKeeper的一些简要介绍搬过来看看 ...

  8. EF查询百万级数据的性能测试

    一.起因  个人还是比较喜欢EF的,毕竟不用写Sql,开发效率高,操作简单,不过总是听人说EF的性能不是很好,也看过别人做的测试,但是看了就以为真的是那样.但是实际上到底是怎么样,说实话我真的不知道. ...

  9. C#、Java中的一些小功能点总结(持续更新......)

    前言:在项目中,有时候一些小的功能点,总是容易让人忽略,但是这些功能加在项目中往往十分的有用,因此笔者在这里总结项目中遇到的一些实用的小功能点,以备用,并持续更新...... 1.禁用DataGrid ...

随机推荐

  1. js判断浏览器的类型,动态调整div布局

    最近写页面用bootstrap和amazeUi然后发现自己写的部分和两个框架做重合时,页面大小变化后有的元素变得很乱,很乱无奈只好用js判断 window.onscroll = function sc ...

  2. 助教总结 -【福大软工实践-2017-2018-K班】

    助教总结 -[福大软工实践-2017-2018-K班] 非常抱歉这么晚才来写总结! 助教工作 助教共发表博客39篇. 助教共点评约500条. 起步 对于常规课程的起步,通常都是在第一次课堂上由老师对课 ...

  3. Choosing The Commander CodeForces - 817E (01字典树+思维)

    As you might remember from the previous round, Vova is currently playing a strategic game known as R ...

  4. Tea Party CodeForces - 808C (构造+贪心)

    Polycarp invited all his friends to the tea party to celebrate the holiday. He has ncups, one for ea ...

  5. 软工网络15团队作业8——Beta阶段敏捷冲刺

    Deadline: 2018-5-31 22:00PM,以博客提交至班级博客时间为准 根据以下要求: (1)在敏捷冲刺前发布一篇博客,作为beta版敏捷冲刺的开始, (2)同时,团队在日期区间[5.2 ...

  6. vue单页面模板说明文档(1)

    Introduction This boilerplate is targeted towards large, serious projects and assumes you are somewh ...

  7. springmvc配置文件的主要内容

    springmvc配置文件的主要内容:

  8. day 7-8 协程

    不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去调 只要你用并发,就会有锁的问题,但是你不能一直去自己加锁吧那么我们 ...

  9. SQL年月日格式化

    Select CONVERT(varchar(100), GETDATE(), 23): 2006-05-16

  10. Form组件归类

    一.Form类 创建Form类时,主要涉及到 [字段] 和 [插件],字段用于对用户请求数据的验证,插件用于自动生成HTML; 1.Django内置字段如下: 1 Field 2 required=T ...