exgcd求解同余方程的最小正整数解 poj1061 poj2115
这两题都是求解同余方程,并要求出最小正整数解的
对于给定的Ax=B(mod C) 要求x的最小正整数解
首先这个式子可转化为 Ax+Cy=B,那么先用exgcd求出Ax+Cy=gcd(A,C)的解x
然后这个式子的一个特解就是 (B/gcd(A,C))* x
要注意如果gcd(A,C)无法整除B,那么这个式子无解
然后是求出最小整数解
Ax+Cy=B 方程的通解是 x+k*C/gcd(A,C),
另s=C/gcd(A,C)
所以最小整数解是(x%s+s)%s
青蛙题
/*
x+km=y+kn(mod L) x+km+t*L=y+kn
k(m-n)+(x-y)=-t*L
k(n-m)-(x-y)=t*L 要求出k
即(n-m)k = x-y(mod L)
那么(x-y)%gcd(n-m,L)==0 如果(x-y)%gcd(n-m,L)!=0,那么就是无解 用exgcd(n-m,l,x,y)出k0即可
答案是(x-y)/gcd(n-m,L)*k0+l/gcd(n-m,l)
*/
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define ll long long
ll x,y,m,n,L;
ll exgcd(ll a,ll b,ll &x,ll &y){
if(b==){x=;y=;return a;}
ll d=exgcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
int main(){
while(cin>>x>>y>>m>>n>>L){
ll a=n-m,b=L,c=x-y,k,u;
ll d=exgcd(a,b,k,u);
if(c%d!=){
puts("Impossible");
continue;
}
k=k*(c/d);//该方程特解
ll m=b/d;
printf("%lld\n",(k%m+m)%m);
}
}
looop题
/*
Cx=B-A(mod L)
转化为求同余方程
Cx+Ly=B-A
d=gcd(C,L)
d|B-A,则有解
exgcd(C,L,x,y)解得x
先求出一个特解x=(B-A)/d*x
然后再求最小整数解即可
*/
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define ll long long
ll exgcd(ll a,ll b,ll &x,ll &y){
if(!b){x=,y=;return a;}
ll d=exgcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
int main(){
ll A,B,C,k,L;
while(cin>>A>>B>>C>>k && (A||B||C||k) ){
L=;
for(int i=;i<=k;i++)
L*=;
ll d,x,y;
d=exgcd(C,L,x,y);
if((B-A)%d!=){
puts("FOREVER");
continue;
} x=(B-A)/d*x;
ll s=L/d;
cout<<(x%s+s)%s<<endl;
}
}
exgcd求解同余方程的最小正整数解 poj1061 poj2115的更多相关文章
- ex_gcd求不定方程的最小正整数解
#include<bits/stdc++.h> using namespace std; int gcd(int a,int b) {return b?gcd(b,a%b):a;} int ...
- POJ - 1061 青蛙的约会 扩展欧几里得 + (贝祖公式)最小正整数解
题意: 青蛙 A 和 青蛙 B ,在同一纬度按照相同方向跳跃相同步数,A的起点为X ,每一步距离为m,B的起点为Y,每一步距离为 n,一圈的长度为L,求最小跳跃步数. 思路: 一开始按照追击问题来写, ...
- [NBUT 1224 Happiness Hotel 佩尔方程最小正整数解]连分数法解Pell方程
题意:求方程x2-Dy2=1的最小正整数解 思路:用连分数法解佩尔方程,关键是找出√d的连分数表示的循环节.具体过程参见:http://m.blog.csdn.net/blog/wh2124335/8 ...
- POJ - 1061 扩展欧几里德算法+求最小正整数解
//#pragma comment(linker, "/STACK:1024000000,1024000000") //#pragma GCC optimize(2) #inclu ...
- 【poj 1061】青蛙的约会(数论--拓展欧几里德 求解同余方程)
题意:已知2只青蛙的起始位置 a,b 和跳跃一次的距离 m,n,现在它们沿着一条长度为 l 的纬线(圈)向相同方向跳跃.问它们何时能相遇?(好有聊的青蛙 (΄◞ิ౪◟ิ‵) *)永不相遇就输出&quo ...
- 【poj 2115】C Looooops(数论--拓展欧几里德 求解同余方程 模版题)
题意:有一个在k位无符号整数下的模型:for (variable = A; variable != B; variable += C) statement; 问循环的次数,若"永不停息&q ...
- 【hdu 1573】X问题(数论--拓展欧几里德 求解同余方程组的个数)
题目:求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], -, X mod a[i] = b[i] ...
- 扩展欧几里得求解同余方程(poj 1061)
设方程 ax + by = c , 若 gcd(a,b) 是 c的因子(记作gcd(a,b)|c)则方程有解,反之无解. 其中x0,y0是方程的一组特解 , d = gcd(a,b), poj1061 ...
- 扩展欧几里得(exgcd)-求解不定方程/求逆元
贝祖定理:即如果a.b是整数,那么一定存在整数x.y使得ax+by=gcd(a,b).换句话说,如果ax+by=m有解,那么m一定是gcd(a,b)的若干倍.(可以来判断一个这样的式子有没有解)有一个 ...
随机推荐
- bae64编码
data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAAEAAAAkCAYAAABIdFAMAAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJb ...
- javascript常用函数封装——运动、cookie、ajax、获取行内样式兼容写法、拖拽
运动.cookie.ajax.获取行内样式兼容写法.拖拽封装大合集. //url,data,type,timeout,success,error function ajax(options){ //- ...
- Caused by: java.lang.NoSuchMethodError: javax.servlet.ServletContext.getClassLoader()Ljava/lang/ClassLoader;
运行tomat 报错: Caused by: java.lang.NoSuchMethodError: javax.servlet.ServletContext.getClassLoader()Lj ...
- nginx 目录讲解
- Spring Bean自动检测
1-自动检测bean 需要用到<context:component-scan> 注意:a) 需要include进来xmlns:context命名空间:base-package指的是我们要扫 ...
- golang 之 flag.String
无论是c语言还是golang语言或是其他语言,启动应用程序时都可以带一些参数,然后系统根据传入的参数进行特点的工作.如:./main -b /home/backupdir -d true 那么如何更好 ...
- VPS上拖文件(Apache配置、SSH)
场景 下载VPS上的文件 命令 Apache配置 yum install httpd -y /etc/rc.d/init.d/httpd start /sbin/iptables -I INPUT - ...
- JavaScript使用方法和技巧大全
有些时候你精通一门语言,但是会发现你其实整天在和其它语言打交道,也许你以为这些微不足道,不至于影响你的开发进度,但恰恰是这些你不重视的东西会浪费你很多时间,我一直以为我早在几年前就已经精通Ja ...
- 【转】Java并发编程:并发容器之ConcurrentHashMap
JDK5中添加了新的concurrent包,相对同步容器而言,并发容器通过一些机制改进了并发性能.因为同步容器将所有对容器状态的访问都串行化了,这样保证了线程的安全性,所以这种方法的代价就是严重降低了 ...
- 文件缓存tmpfs简单使用
文件缓存tmpfs基于内存的文件系统,直接使用ram(物理内存)+swap(交换分区) tmpfs缓存文件系统/dev/shm共享内存动态的使用虚拟内存,文件删除后释放内存 特性:1.动态空间使用和动 ...