The Maximum Number of Strong Kings

 

Description

A tournament can be represented by a complete graph in which each vertex denotes a player and a directed edge is from vertex x to vertex y if player x beats player y. For a player x in a tournament T, the score of x is the number of players beaten by x. The score sequence of T, denoted by S(T) = (s1, s2, . . . , sn), is a non-decreasing list of the scores of all the players in T. It can be proved that S(T) = (s1, s2, . . . , sn) is a score sequence of T if and only if 
for k = 1, 2, . . . , n and equality holds when k = n. A player x in a tournament is a strong king if and only if x beats all of the players whose scores are greater than the score of x. For a score sequence S, we say that a tournament T realizes S if S(T) = S. In particular, T is a heavy tournament realizing S if T has the maximum number of strong kings among all tournaments realizing S. For example, see T2 in Figure 1. Player a is a strong king since the score of player a is the largest score in the tournament. Player b is also a strong king since player b beats player a who is the only player having a score larger than player b. However, players c, d and e are not strong kings since they do not beat all of the players having larger scores. 
The purpose of this problem is to find the maximum number of strong kings in a heavy tournament after a score sequence is given. For example,Figure 1 depicts two possible tournaments on five players with the same score sequence (1, 2, 2, 2, 3). We can see that there are at most two strong kings in any tournament with the score sequence (1, 2, 2, 2, 3) since the player with score 3 can be beaten by only one other player. We can also see that T2 contains two strong kings a and b. Thus, T2 is one of heavy tournaments. However, T1 is not a heavy tournament since there is only one strong king in T1. Therefore, the answer of this example is 2. 

Input

The first line of the input file contains an integer m, m <= 10, which represents the number of test cases. The following m lines contain m score sequences in which each line contains a score sequence. Note that each score sequence contains at most ten scores.

Output

The maximum number of strong kings for each test case line by line.

Sample Input

5
1 2 2 2 3
1 1 3 4 4 4 4
3 3 4 4 4 4 5 6 6 6
0 3 4 4 4 5 5 5 6
0 3 3 3 3 3

Sample Output

2
4
5
3
5
#include<cstdio>
#include<vector>
#include<queue>
#include<cstring>
using namespace std;
typedef long long LL;
const int MAXN=;
int s[],id[][],v[][],cnt1,cnt2;
char str[];
struct dinic
{
struct Edge
{
int from,to,cap,flow;
Edge(){}
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){};
};
int s,t,d[MAXN],cur[MAXN];
bool vis[MAXN];
vector<Edge>edges;
vector<int>G[MAXN];
inline void init()
{
for(int i=;i<;i++)G[i].clear();
edges.clear();
}
void addedge(int from,int to,int cap)
{
edges.push_back((Edge){from,to,cap,});
edges.push_back((Edge){to,from,,});
int m=edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
}
bool bfs()
{
memset(vis,,sizeof(vis));
queue<int>q;
q.push(s);
d[s]=;
vis[s]=;
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=;i<G[x].size();i++)
{
Edge& e=edges[G[x][i]];
if(!vis[e.to]&&e.cap>e.flow)
{
vis[e.to]=;
d[e.to]=d[x]+;
q.push(e.to);
}
}
}
return vis[t];
}
int dfs(int x,int a)
{
if(x==t||a==)return a;
int flow=,f;
for(int& i=cur[x];i<G[x].size();i++)
{
Edge& e=edges[G[x][i]];
if(d[x]+==d[e.to]&&(f=dfs(e.to,min(a,e.cap-e.flow)))>)
{
e.flow+=f;
edges[G[x][i]^].flow-=f;
flow+=f;
a-=f;
if(a==)break;
}
}
return flow;
}
int maxflow(int s,int t)
{
this->s=s,this->t=t;
int flow=;
while(bfs())
{
memset(cur,,sizeof(cur));
flow+=dfs(s,2e5+);
}
return flow;
}
}dc;
bool check(int x)
{
dc.init();
memset(v,,sizeof(v));
for(int i=;i<=cnt1;i++)
dc.addedge(,i,s[i]);
for(int i=;i<=x;i++)
for(int j=i+;j<=x;j++)
if(s[i]>s[j])
dc.addedge(j,id[i][j],),v[i][j]=;
for(int i=;i<=cnt1;i++)
for(int j=i+;j<=cnt1;j++)
{
dc.addedge(id[i][j],cnt1+cnt2+,);
if(!v[i][j])
dc.addedge(i,id[i][j],),dc.addedge(j,id[i][j],);
}
return dc.maxflow(,cnt1+cnt2+)==cnt1*(cnt1-)/;
}
int main()
{
int T;
scanf("%d",&T);
getchar();
while(T--)
{
gets(str);
cnt1=cnt2=;
for(int i=,len=strlen(str);i<len;i++)
if(str[i]!=' ')
s[++cnt1]=(int)str[i]-'';
for(int i=;i<=cnt1/;i++)
swap(s[i],s[cnt1-i+]);
for(int i=;i<=cnt1;i++)
for(int j=i+;j<=cnt1;j++)
id[i][j]=++cnt2+cnt1;
for(int i=cnt1;i>=;i--)
if(check(i))
{
printf("%d\n",i);
break;
}
}
return ;
}

POJ 2699 The Maximum Number of Strong Kings Description的更多相关文章

  1. POJ 2699 The Maximum Number of Strong Kings (最大流+枚举)

    http://poj.org/problem?id=2699 题意: 一场联赛可以表示成一个完全图,点表示参赛选手,任意两点u, v之间有且仅有一条有向边(u, v)或( v, u),表示u打败v或v ...

  2. POJ - 2699 The Maximum Number of Strong Kings (最大流+枚举)

    题意:有n(n<=10)个选手,两两之间打比赛,共有n*(n-1)/2场比赛,赢一场得1分.给出每个人最后的得分.求有多少个定义如下的strong king:赢了所有得分比自己高的人或本身就是分 ...

  3. poj 2699 The Maximum Number of Strong Kings 枚举 最大流

    题目链接 题意 对于一个竞赛图(有向完全图),其顶点是选手,边是比赛,边\(e=(u,v)\)代表该场比赛中\(u\)战胜\(v\). 现定义选手的分数为其战胜的人的个数(即竞赛图中点的出度).并且定 ...

  4. poj 2699 The Maximum Number of Strong Kings【最大流+枚举】

    因为n很小所以从大到小枚举答案.(从小到大先排个序,因为显然胜利场次越多越容易成为strong king.然后对于每个枚举出来的ans建图.点分别表示人和比赛.s向所有人连接流量为胜利场次的边,所有比 ...

  5. POJ 2699 The Maximum Number of Strong Kings ——网络流

    一定存在一种最优方案,使得分数前几个人是SK 所以我们可以二分答案或者枚举,然后就是经典的网络流建模. 另:输入很Excited #include <cstdio> #include &l ...

  6. POJ2699:The Maximum Number of Strong Kings(枚举+贪心+最大流)

    The Maximum Number of Strong Kings Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2488 ...

  7. POJ2699 The Maximum Number of Strong Kings

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2102   Accepted: 975 Description A tour ...

  8. 【POJ2699】The Maximum Number of Strong Kings(网络流)

    Description A tournament can be represented by a complete graph in which each vertex denotes a playe ...

  9. 【POJ】【2699】The Maximum Number of Strong Kings

    网络流/最大流/二分or贪心 题目大意:有n个队伍,两两之间有一场比赛,胜者得分+1,负者得分+0,问最多有几只队伍打败了所有得分比他高的队伍? 可以想到如果存在这样的“strong king”那么一 ...

随机推荐

  1. Anchor 对象

    更改一个链接的文本.URL 以及target<html><head><script type="text/javascript"> functi ...

  2. 【转】Linux CentOS内核编译:下载CentOS源码、编译2.6.32-220的错误(apic.c:819 error 'numi_watchdog' undeclared)

    一.下载CentOS源码 1.1 查看CentOS版本 cat /etc/issue 1.2 查看Linux内核版本 uname -r 1.3 下载 文件名:kernel-2.6.32-220.el6 ...

  3. Tomcat长出现的内存溢出问题

    以下内容转载自博客:http://www.cnblogs.com/apaqi/archive/2012/07/09/2582480.html 在eclipse.ini配置文件中加上以下两行 -XX:P ...

  4. JS Math对象中一些小技巧

    JS中快速获取数组中最大/最小值 var a=[1,2,3,5]; alert(Math.max.apply(Math, a));//最大值 alert(Math.min.apply(Math, a) ...

  5. Android九宫图(draw9patch)

    左边和上边的线决定重复的区域: 右边和下边的线决定显示内容的区域:

  6. 使用属性动画简单实现view飞入效果

    比较简单的效果,可以用来菜单飞入之类,作为记录吧, package com.test.animation; import android.app.Activity; import android.os ...

  7. Oracle时间戳 与时间之间的相互转换

    Unix时间戳记是从'1970-01-01 00:00:00'GMT开始的秒数,表现为整数型. Oracle中的时间是Date型,以下函数提供了两种时间转换的Oracle函数 (1)从Unix时间戳记 ...

  8. (LinkedList) Remove Linked List Elements

    Remove all elements from a linked list of integers that have value val. ExampleGiven: 1 --> 2 --& ...

  9. Chap4: question: 19 - 28

    19. 二叉树的镜像(递归) 即:交换所有节点的左右子树.从下往上 或 从上往下 都可以. #include <iostream> #include <string> usin ...

  10. POJ1061 青蛙的约会-拓展欧几里得

    Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事 ...