Andrew Ng机器学习公开课笔记 -- Mixtures of Gaussians and the EM algorithm
网易公开课,第12,13课
notes,7a, 7b,8
从这章开始,介绍无监督的算法
对于无监督,当然首先想到k means, 最典型也最简单,有需要直接看7a的讲义
Mixtures of Gaussians
如果要理解Mixtures of Gaussians,那先回去复习一下Gaussians Discriminant Analysis,高斯判别分析
首先高斯判别分析是生成算法,

所以不会直接拟合p(y|x), 而是拟合p(x|y)p(y), 即p(x,y)

p(y)符合伯努力分布,如果是多元分类,即多项式分布
p(x|y)符合多项高斯分布
然后用最大似然法,学习出
这个问题就解了
那么对于混合高斯,区别只是,对于一系列数据点,y是未知的,即非监督
下面看看形式化的定义,
既然y是未知,所以换个名字,z,隐随机变量(latent random variables, meaning that they’re hidden/unobserved.)
z符合多项式分布,参数φj表示z=j的概率,所以φ一定>=0, 并且所有φ的和为1

x|z,符合多项高斯分布
和高斯判别分析其实,只是把y替换成z,表示z是未知,不可见的
并且
也是每个多项高斯分布都不同的,这点和高斯判别也有些不一样
那么它的最大似然估计为,

最大似然时,之所以只考虑x,没有像高斯判别那样考虑p(x, y),是因为y不可见
但是怎么理解?
可以想象一维数据,有很多数据点,分别代表多个高斯分布混合着一起
而高斯分布一定是中间的点比较密集,这里的p(x)会比较高
假设我们的数据点是有代表性的,所以拟合出p(x)高的高斯分布,会更合理一些

对于这个如何求解?
直接用梯度下降很难求解,因为在log里面求和。。。求导试试看
当然这里如果z已知,那么就很简单,直接变成高斯判别分析问题,但是问题现在z未知。
解决这个问题的方法,就是EM算法,Expectation Maximization Algorithm
这个算法其实思路很简单,但是如何推导和证明他的收敛和有效,比较复杂
所以先看看思路和实现,再来看推导
思路很简单,既然不知道z,并且如果知道就可以解这个问题,那么我们就先随便猜z,然后再迭代
具体如下,

E步骤,我们任意初始化参数
,就可以算出每个xi对应的zi,其实只要算出上面的这个概念分布就可以
具体算的公式如下,
,其中分别符合多项式和多项高斯分布,代入公式很容易算出
M步骤,

用上面猜的z来重新计算参数,这里看到为何只要算出w就ok,因为就已经足够算出新的参数
至于为何是这个公式,因为从上面高斯判别分析,可以得到,

只是简单的把部分替换成w
通过不停的E,M步骤的迭代,最终一定可以收敛到局部最优,和k-means一样,可以多试些初始值,来找到全局最优
但是为何这么简单的方法会有效,如何理解EM?继续
The EM algorithm
上面看到使用EM来拟合混合高斯问题,但这只是EM的一个特例
这章会推导出EM的一般形式,他可以解决各种含有隐变量的预估问题(estimation problems with latent variables.)
Jensen's inequality
先介绍一下Jensen不等式

首先通过下面的图理解一下,当f是凸函数的时候
E[f(x)] >= f(E[x])
对于凸函数,如果x是随机变量,分布均匀,那么x的均值一定比较接近谷底,所以这个不等式一定成立的

当f是严格凸函数的时候,即
时,普通凸函数,二阶导数可能为0,比如某一段为直线
如果要E[f(x)] = f(E[x]),当且仅当 x = E[x], 即x是个常量
需要注意,这个不等式对于concave,凹函数也是满足的,但不等式的方向相反
EM algorithm
下面来看看EM算法,
对于m个独立的训练数据点,似然函数如下,
这里是通用形式,所以参数就是
,这里没有假设z和x|z的分布,可以是任意分布
这个直接解是很困难的,所以用EM算法解
解的思路,
E-step, construct a lower-bound on
先随便初始化参数,构建这个分布的下界,即最差的case
然后通过下界的分布,得到z
M-step, optimize that lower-bound
用E-step得到的z来最优化参数
如下图,在迭代过程中,下界的分布会不断的逼近真实分布

首先,假设Q为z的某种分布,Q(zi)为zi出现的概率,那么有
,并且Q(zi)>=0

然后为了使用Jensen不等式,对(1)分子分母同时乘上Q(zi),这样就产生了期望E
先看下期望的定义,
那么对应于上面的公式,其中
,为g(z)
而
,为p
所以,
就是, 
再来看Jensen不等式,E[f(x)] >= f(E[x]),其中f就是log,所以得到上面(3)
所以这样就产生了
的下界,

我们需要在M-step中去最优化这个下界,但问题是现在Q分布还没有确定,如何确定哪种Q分布会最好
我们虽然给出在参数
时的下界,但是我们希望这个下界是可以尽量逼近
的,所以希望(3)中最好可以取到等式,这样下界就等于
这时候再看Jensen不等式中,对于=取值的条件,即,

由于
,所以让分子和分母对所有的z求和,应该还是等于c,比如2+4 /1+2,仍然为2,得到
,
所以得到Q的分布,就是z的后验概率

所以,最终得到的general EM算法为,

可以对比一下,之前混合高斯的EM,体会一下特例和通用的差别
那么这个算法是收敛的吗?即证明下面的式子,第t+1次迭代的
>=第t次迭代

过程如下,

(4)给出
的下界
(5)因为在M-step,要在固定Q情况下,最优化
,所以优化完,一定比原来的
要大
(6)因为在取下界的时候,选择Q使得

所以得证
EM和k-means都是一定会收敛到局部最优的
从另外一个角度来看EM,其实是一种坐标上升算法,

在E-Step,我们固定
来,求解最优的Q
在M-Step,我们固定Q来,求解最优的
Mixture of Gaussians revisited
看完通用的EM算法,再会过头来看看混合高斯算法,应该会更清晰一些
对于E-step很简单,
通用的EM,表示为
而对于混合高斯算法,为
,这个很自然,不需要解释
然后对于M-step,需要最大化下面的式子以求出

后面的求解过程就是分别对,
,求导然后求解,就可以得到上面的已经列出的公式,具体过程可以参考讲义,这里就不列了
文本聚类- Mixtures of Naive Bayes Model
这个没有讲义,只能截图
对于naive bayes是文本分类,而因为这里的训练集是不知道y的,所以就是文本聚类问题
得到m个文本,每个文本是n维向量,其中每维取{0,1}代表该word是否在文本中出现
而隐变量z,也是取值{0,1},表示分两类,那么z就符合伯努力分布
p(x|z),符合naive bayes分布

这里给出,E-step和M-step的公式
当然其中M-step是通过最大化P(x|z),求解出来的

其实想想,EM和K-mean的基本思路是差不多的
首先对于数据集,选定特征后,是可分的,即如果把数据画出来,是可以看到明显聚集的

所以随意设定初值后,不断迭代,比如混合高斯,总是可以渐渐收敛到局部最优的,不同于k-mean的是
EM可以给出具体的密度函数p(z|x)
对于隐变量z,其实K-mean,如果设k=2,即两类,相当于产生z取值{0,1}
Andrew Ng机器学习公开课笔记 -- Mixtures of Gaussians and the EM algorithm的更多相关文章
- Andrew Ng机器学习公开课笔记 -- 支持向量机
网易公开课,第6,7,8课 notes,http://cs229.stanford.edu/notes/cs229-notes3.pdf SVM-支持向量机算法概述, 这篇讲的挺好,可以参考 先继 ...
- Andrew Ng机器学习公开课笔记–Principal Components Analysis (PCA)
网易公开课,第14, 15课 notes,10 之前谈到的factor analysis,用EM算法找到潜在的因子变量,以达到降维的目的 这里介绍的是另外一种降维的方法,Principal Compo ...
- Andrew Ng机器学习公开课笔记 -- 学习理论
网易公开课,第9,10课 notes,http://cs229.stanford.edu/notes/cs229-notes4.pdf 这章要讨论的问题是,如何去评价和选择学习算法 Bias/va ...
- Andrew Ng机器学习公开课笔记 -- Regularization and Model Selection
网易公开课,第10,11课 notes,http://cs229.stanford.edu/notes/cs229-notes5.pdf Model Selection 首先需要解决的问题是,模型 ...
- Andrew Ng机器学习公开课笔记–Reinforcement Learning and Control
网易公开课,第16课 notes,12 前面的supervised learning,对于一个指定的x可以明确告诉你,正确的y是什么 但某些sequential decision making问题,比 ...
- Andrew Ng机器学习公开课笔记 – Factor Analysis
网易公开课,第13,14课 notes,9 本质上因子分析是一种降维算法 参考,http://www.douban.com/note/225942377/,浅谈主成分分析和因子分析 把大量的原始变量, ...
- Andrew Ng机器学习公开课笔记–Independent Components Analysis
网易公开课,第15课 notes,11 参考, PCA本质是旋转找到新的基(basis),即坐标轴,并且新的基的维数大大降低 ICA也是找到新的基,但是目的是完全不一样的,而且ICA是不会降维的 对于 ...
- Andrew Ng机器学习公开课笔记 -- Online Learning
网易公开课,第11课 notes,http://cs229.stanford.edu/notes/cs229-notes6.pdf 和之前看到的batch learning算法不一样,batch ...
- Andrew Ng机器学习公开课笔记 -- 线性回归和梯度下降
网易公开课,监督学习应用.梯度下降 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 线性回归(Linear Regression) 先看个 ...
随机推荐
- wp8 -- gameover
<phone:PhoneApplicationPage.Resources> <Storyboard x:Name="Storyboard1"> <D ...
- Struts表单格局;theme三个属性值:simple,xhtml,css_xhtml
转自:http://www.educity.cn/wenda/7156.html 解决Struts2 Form表单自己布局之前先看看 theme 属性, theme属性提供 三个属性值:simple, ...
- GPS基础
public class MainActivity extends Activity { private LocationManager manager; private List<String ...
- 简单几何(线段相交)+模拟 POJ 3449 Geometric Shapes
题目传送门 题意:给了若干个图形,问每个图形与哪些图形相交 分析:题目说白了就是处理出每个图形的线段,然后判断是否相交.但是读入输出巨恶心,就是个模拟题加上线段相交的判断,我第一次WA不知道输出要按字 ...
- ZOJ1232 Adventure of Super Mario(DP+SPFA)
dp[u][t]表示从起点出发,到达i点且用了t次magic boot时的最短时间, 方程如下: dp[v][t]=min(dp[v][t],dp[u][t]+dis[u][v]); dp[v][t] ...
- 浅谈Apache Spark的6个发光点(CSDN)
Spark是一个基于内存计算的开源集群计算系统,目的是更快速的进行数据分析.Spark由加州伯克利大学AMP实验室Matei为主的小团队使用Scala开发开发,其核心部分的代码只有63个Scala文件 ...
- C++中inline这个玩意儿
inline 说明这个函数是内联的,在编译过程中内联函数会直接被源代码替换,提高执行效率 如果类中的某个函数会被调用很多次或者放在循环中,那么建议将这个函数声明为内联,可以提高程序的运行效率
- 定时任务之Spring与Quartz的整合(有修改)
转摘:http://www.javaweb1024.com/java/JavaWebzhongji/2015/04/13/548.html 在Spring中使用Quartz有两种方式实现:第一种是任务 ...
- Google Code Jam 2009 Qualification Round Problem C. Welcome to Code Jam
本题的 Large dataset 本人尚未解决. https://code.google.com/codejam/contest/90101/dashboard#s=p2 Problem So yo ...
- PHP + Redis 实现一个简单的twitter
原文位于Redis官网http://redis.io/topics/twitter-clone Redis是NoSQL数据库中一个知名数据库,在新浪微博中亦有部署,适合固定数据量的热数据的访问. 作为 ...