Scout YYF I
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6757   Accepted: 1960

Description

YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's base. After overcoming a series difficulties, YYF is now at the start of enemy's famous "mine road". This is a very long road, on which there are numbers of mines. At first, YYF is at step one. For each step after that, YYF will walk one step with a probability of p, or jump two step with a probality of 1-p. Here is the task, given the place of each mine, please calculate the probality that YYF can go through the "mine road" safely.

Input

The input contains many test cases ended with EOF.
Each test case
contains two lines.
The First line of each test case is N (1 ≤
N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single
blank, standing for the number of mines and the probability to walk one
step.
The Second line of each test case is N integer standing for the place
of N mines. Each integer is in the range of [1, 100000000].

Output

For each test case, output the probabilty in a single line with the
precision to 7 digits after the decimal point.

Sample Input

1 0.5
2
2 0.5
2 4

Sample Output

0.5000000
0.2500000

Source

 
题意:在一条不满地雷的路上,你现在的起点在1处。在N个点处布有地雷,1<=N<=10。地雷点的坐标范围:[1,100000000].
每次前进p的概率前进一步,1-p的概率前进1-p步。问顺利通过这条路的概率。就是不要走到有地雷的地方。
 
设dp[i]表示到达i点的概率,则 初始值 dp[1]=1.
很容易想到转移方程: dp[i]=p*dp[i-1]+(1-p)*dp[i-2];
但是由于坐标的范围很大,直接这样求是不行的,而且当中的某些点还存在地雷。
 
N个有地雷的点的坐标为 x[1],x[2],x[3]```````x[N].
我们把道路分成N段:
1~x[1];
x[1]+1~x[2];
x[2]+1~x[3];
`
`
`
x[N-1]+1~x[N].
 
这样每一段只有一个地雷。我们只要求得通过每一段的概率。乘法原理相乘就是答案。
对于每一段,通过该段的概率等于1-踩到该段终点的地雷的概率。
 
就比如第一段 1~x[1].  通过该段其实就相当于是到达x[1]+1点。那么p[x[1]+1]=1-p[x[1]].
但是这个前提是p[1]=1,即起点的概率等于1.对于后面的段我们也是一样的假设,这样就乘起来就是答案了。
 
对于每一段的概率的求法可以通过矩阵乘法快速求出来。
 
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
struct Mat
{
double mat[][];
};
int x[],n;
Mat operator*(Mat a,Mat b)
{
Mat c;
for(int i = ; i < ; i++)
{
for(int j = ; j < ; j++)
c.mat[i][j] = ;
}
for(int i = ; i < ; i++)
{
for(int j = ; j < ; j++)
{
for(int k = ; k < ; k++)
c.mat[i][j] += a.mat[i][k] * b.mat[k][j];
}
}
return c;
}
Mat operator^(Mat a, int k)
{
Mat c;
for(int i = ; i < ; i++)
for(int j = ; j < ; j++)
c.mat[i][j] = (i == j);
while(k)
{
if(k % )
c = c * a;
a = a * a;
k = k / ;
}
return c;
}
int main()
{
double p;
while(scanf("%d%lf", &n,&p) != EOF)
{
for(int i = ; i < n; i++)
scanf("%d", &x[i]);
sort(x, x + n);
Mat tt,temp;
temp.mat[][] = tt.mat[][] = p;
temp.mat[][] = tt.mat[][] = - p;
temp.mat[][] = tt.mat[][] = ;
temp.mat[][] = tt.mat[][] = ; temp = tt ^ (x[] - );
double ans = ;
ans *= ( - temp.mat[][]);
for(int i = ; i < n; i++)
{
if(x[i] == x[i - ])
continue;
temp = tt ^ (x[i] - x[i - ] - ); // 因为要从x[i - 1] + 1开始走,x[i - 1] 是雷
ans *= ( - temp.mat[][]);
}
printf("%0.7lf\n", ans);
}
return ;
}
 

POJ3744Scout YYF I(求概率 + 矩阵快速幂)的更多相关文章

  1. 刷题总结—— Scout YYF I(poj3744 矩阵快速幂+概率dp)

    题目: Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate int ...

  2. Scout YYF I (概率+矩阵快速幂)

    YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's ba ...

  3. 【XSY2612】Comb Avoiding Trees 生成函数 多项式求逆 矩阵快速幂

    题目大意 本题的满二叉树定义为:不存在只有一个儿子的节点的二叉树. 定义一棵满二叉树\(A\)包含满二叉树\(B\)当且经当\(A\)可以通过下列三种操作变成\(B\): 把一个节点的两个儿子同时删掉 ...

  4. HDU4565-数学推导求递推公式+矩阵快速幂

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4565 我们带着这个根号是没法计算的 我们仔细观察一下,(a+sqrt(b))^n用二项式定理展开,我 ...

  5. Just Oj 2017C语言程序设计竞赛高级组A: 求近似值(矩阵快速幂)

    A: 求近似值 时间限制: 1 s      内存限制: 128 MB 提交 我的状态 题目描述 求⌊(5–√+6–√)2n⌋⌊(5+6)2n⌋%9932017. 例如:n=1,(5–√+6–√)2( ...

  6. 2017 ACM-ICPC 亚洲区(西安赛区)网络赛 Coin 概率+矩阵快速幂

    题目链接: https://nanti.jisuanke.com/t/17115 题意: 询问硬币K次,正面朝上次数为偶数. 思路: dp[i][0] = 下* dp[i-1][0] + 上*dp[i ...

  7. HDU 3221 矩阵快速幂+欧拉函数+降幂公式降幂

    装载自:http://www.cnblogs.com/183zyz/archive/2012/05/11/2495401.html 题目让求一个函数调用了多少次.公式比较好推.f[n] = f[n-1 ...

  8. 2019牛客多校第五场 B - generator 1 矩阵快速幂+十倍增+二进制倍增优化

    B - generator 1 题意 给你\(x_{0}.x_{1}.a.b.b.mod\),根据\(x_{i} = a*x_{i-1} + b*x_{i-2}\)求出\(x_{n}\) 思路 一般看 ...

  9. poj4474 Scout YYF I(概率dp+矩阵快速幂)

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4100   Accepted: 1051 Descr ...

随机推荐

  1. iOS获取窗口当前显示的控制器

    解决类似网易新闻客户端收到新闻推送后,弹出一个UIAlert,然后跳转到新闻详情页面这种需求 1.提供一个UIView的分类方法,这个方法通过响应者链条获取view所在的控制器 - (UIViewCo ...

  2. project和task

    projects和tasks是Gradle中最重要的两个概念 任何一个Gradle构建狗屎一个或多个projects的组成.每个project包括许多可构建组成部分 什么是 project ? 一个j ...

  3. f2fs解析(二)f2fs写checkpoint时如何冻住整个文件系统

    函数write_checkpoint中,会调用block_operations,函数中有这样一段代码: retry_flush_dents: f2fs_lock_all(sbi); /* write ...

  4. 使用C#改变鼠标的指针形状

    1.在一个无标题的窗体中用MOUSEMOVE事件判断鼠标坐标是否到达窗体的边缘,如果是的话将鼠标指针改为可调整窗体大小的双向箭头. private   void   Form1_MouseMove(o ...

  5. android背景选择器selector用法汇总

    一.创建xml文件,位置:drawable/xxx.xml,同目录下记得要放相关图片 <?xml version="1.0" encoding="utf-8&quo ...

  6. [CareerCup] 2.6 Linked List Cycle 单链表中的环

    2.6 Given a circular linked list, implement an algorithm which returns the node at the beginning of ...

  7. 20135220谈愈敏Linux_总结

    Linux_总结 具体博客链接 计算机是如何工作的 操作系统是如何工作的 构造一个简单的Linux系统MenuOS 系统调用(上) 系统调用(下) 进程的描述和创建 可执行程序的装载 进程的切换和系统 ...

  8. 浪潮之巅IT那点事之三——神奇的规律

    “道可道,非常道”是老子在<道德经>中的开篇第一句话,这句话的意思是:万事万物其真理是可以探索并道说得出来的,但这些真理并非是永恒的,天道轮转,没有永恒不变的真理(来自百度百科).在IT行 ...

  9. 关于git托管的一些心得

    GIT托管的一些心得 熟练运用软件进行GIT托管的好处 在上一周的学习中,我提出来了一个疑惑,就是为什么一定要用软件托管而不选择web托管,在这周的学习中,我通过实践体会到了一些运用软件托管的好处: ...

  10. webSocket实现web及时聊天的例子

    概述 websocket目前虽然无法普及应用,未来是什么样子,我们不得而知,但现在开始学习应用它,只有好处没有坏处,本随笔的WebSocket是版本13(RFC6455)协议的实现,也是目前webso ...