POJ3744Scout YYF I(求概率 + 矩阵快速幂)
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 6757 | Accepted: 1960 |
Description
Input
Each test case
contains two lines.
The First line of each test case is N (1 ≤
N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single
blank, standing for the number of mines and the probability to walk one
step.
The Second line of each test case is N integer standing for the place
of N mines. Each integer is in the range of [1, 100000000].
Output
precision to 7 digits after the decimal point.
Sample Input
1 0.5
2
2 0.5
2 4
Sample Output
0.5000000
0.2500000
Source
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
struct Mat
{
double mat[][];
};
int x[],n;
Mat operator*(Mat a,Mat b)
{
Mat c;
for(int i = ; i < ; i++)
{
for(int j = ; j < ; j++)
c.mat[i][j] = ;
}
for(int i = ; i < ; i++)
{
for(int j = ; j < ; j++)
{
for(int k = ; k < ; k++)
c.mat[i][j] += a.mat[i][k] * b.mat[k][j];
}
}
return c;
}
Mat operator^(Mat a, int k)
{
Mat c;
for(int i = ; i < ; i++)
for(int j = ; j < ; j++)
c.mat[i][j] = (i == j);
while(k)
{
if(k % )
c = c * a;
a = a * a;
k = k / ;
}
return c;
}
int main()
{
double p;
while(scanf("%d%lf", &n,&p) != EOF)
{
for(int i = ; i < n; i++)
scanf("%d", &x[i]);
sort(x, x + n);
Mat tt,temp;
temp.mat[][] = tt.mat[][] = p;
temp.mat[][] = tt.mat[][] = - p;
temp.mat[][] = tt.mat[][] = ;
temp.mat[][] = tt.mat[][] = ; temp = tt ^ (x[] - );
double ans = ;
ans *= ( - temp.mat[][]);
for(int i = ; i < n; i++)
{
if(x[i] == x[i - ])
continue;
temp = tt ^ (x[i] - x[i - ] - ); // 因为要从x[i - 1] + 1开始走,x[i - 1] 是雷
ans *= ( - temp.mat[][]);
}
printf("%0.7lf\n", ans);
}
return ;
}
POJ3744Scout YYF I(求概率 + 矩阵快速幂)的更多相关文章
- 刷题总结—— Scout YYF I(poj3744 矩阵快速幂+概率dp)
题目: Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate int ...
- Scout YYF I (概率+矩阵快速幂)
YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's ba ...
- 【XSY2612】Comb Avoiding Trees 生成函数 多项式求逆 矩阵快速幂
题目大意 本题的满二叉树定义为:不存在只有一个儿子的节点的二叉树. 定义一棵满二叉树\(A\)包含满二叉树\(B\)当且经当\(A\)可以通过下列三种操作变成\(B\): 把一个节点的两个儿子同时删掉 ...
- HDU4565-数学推导求递推公式+矩阵快速幂
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4565 我们带着这个根号是没法计算的 我们仔细观察一下,(a+sqrt(b))^n用二项式定理展开,我 ...
- Just Oj 2017C语言程序设计竞赛高级组A: 求近似值(矩阵快速幂)
A: 求近似值 时间限制: 1 s 内存限制: 128 MB 提交 我的状态 题目描述 求⌊(5–√+6–√)2n⌋⌊(5+6)2n⌋%9932017. 例如:n=1,(5–√+6–√)2( ...
- 2017 ACM-ICPC 亚洲区(西安赛区)网络赛 Coin 概率+矩阵快速幂
题目链接: https://nanti.jisuanke.com/t/17115 题意: 询问硬币K次,正面朝上次数为偶数. 思路: dp[i][0] = 下* dp[i-1][0] + 上*dp[i ...
- HDU 3221 矩阵快速幂+欧拉函数+降幂公式降幂
装载自:http://www.cnblogs.com/183zyz/archive/2012/05/11/2495401.html 题目让求一个函数调用了多少次.公式比较好推.f[n] = f[n-1 ...
- 2019牛客多校第五场 B - generator 1 矩阵快速幂+十倍增+二进制倍增优化
B - generator 1 题意 给你\(x_{0}.x_{1}.a.b.b.mod\),根据\(x_{i} = a*x_{i-1} + b*x_{i-2}\)求出\(x_{n}\) 思路 一般看 ...
- poj4474 Scout YYF I(概率dp+矩阵快速幂)
Scout YYF I Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4100 Accepted: 1051 Descr ...
随机推荐
- poj1012
Joseph Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 52097 Accepted: 19838 Descript ...
- easyui-combobox的取值问题
例子:<select id="cc" class="easyui-combobox" name="cc" style="wi ...
- CSS 实现加载动画之五-光盘旋转
今天做的这个动画叫光盘旋转,名字自己取的.动画的效果估计很多人都很熟悉,就是微信朋友圈里的加载动画.做过前面几个动画,发现其实都一个原理,就是如何将动画的元素如何分离出来.这个动画的实现也很简单,关键 ...
- 结合C++和GDAL实现shapefile(shp)文件的读取
工具:vs2012+GDAL 2.0 数据:中国省界SHP文件bou2_4p.shp 可点击下载 包含头文件: #include "ogrsf_frmts.h" 代码: int ...
- ios——MPMoviePlayerController截取视频缩略图 播放视频又可以截取视频缩略图
#import <AVKit/AVKit.h>#import <MediaPlayer/MediaPlayer.h>#import "ViewController.h ...
- 优化Webstorm
Webstorm这个编辑器还是很强大的,而且版本更新得快,支持最新的typescript,就是性能越来越低. 本文总结了一些优化Webstorm的有效方法,希望对大家有所帮助! 测试环境 Mac OS ...
- 清除sql server 登录的时候记住的账户
SQl 2008如何清除登陆过的服务器名称 C:\Users\Administrator\AppData\Roaming\Microsoft\Microsoft SQL Server\100\To ...
- Javascript 里的 in
写js的时候需要遍历一个对象的属性,把属性名和属性值都提出来,之前没遇到这种需求,查了一下可以用for in的方式. var obj = { "key1":"value1 ...
- NHibernate扫盲
NHibernate中Get和Load的区别 (1) get()采用立即加载方式,而load()采用延迟加载; get()方法执行的时候,会立即向数据库发出查询语句, 而load()方法返回的是一个代 ...
- [Bug]当IDENTITY_INSERT设置为OFF时,不能为表“xx”中的标识列插入显示的值
写在前面 在设计数据库表时,将主键设置为了自增的.在使用linq to sql的时候,添加数据,出现此错误. 解决方案 找到linq to sql生成的**.dbml文件,在对应的表上面右键修改其属性 ...