Scout YYF I
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6757   Accepted: 1960

Description

YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's base. After overcoming a series difficulties, YYF is now at the start of enemy's famous "mine road". This is a very long road, on which there are numbers of mines. At first, YYF is at step one. For each step after that, YYF will walk one step with a probability of p, or jump two step with a probality of 1-p. Here is the task, given the place of each mine, please calculate the probality that YYF can go through the "mine road" safely.

Input

The input contains many test cases ended with EOF.
Each test case
contains two lines.
The First line of each test case is N (1 ≤
N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single
blank, standing for the number of mines and the probability to walk one
step.
The Second line of each test case is N integer standing for the place
of N mines. Each integer is in the range of [1, 100000000].

Output

For each test case, output the probabilty in a single line with the
precision to 7 digits after the decimal point.

Sample Input

1 0.5
2
2 0.5
2 4

Sample Output

0.5000000
0.2500000

Source

 
题意:在一条不满地雷的路上,你现在的起点在1处。在N个点处布有地雷,1<=N<=10。地雷点的坐标范围:[1,100000000].
每次前进p的概率前进一步,1-p的概率前进1-p步。问顺利通过这条路的概率。就是不要走到有地雷的地方。
 
设dp[i]表示到达i点的概率,则 初始值 dp[1]=1.
很容易想到转移方程: dp[i]=p*dp[i-1]+(1-p)*dp[i-2];
但是由于坐标的范围很大,直接这样求是不行的,而且当中的某些点还存在地雷。
 
N个有地雷的点的坐标为 x[1],x[2],x[3]```````x[N].
我们把道路分成N段:
1~x[1];
x[1]+1~x[2];
x[2]+1~x[3];
`
`
`
x[N-1]+1~x[N].
 
这样每一段只有一个地雷。我们只要求得通过每一段的概率。乘法原理相乘就是答案。
对于每一段,通过该段的概率等于1-踩到该段终点的地雷的概率。
 
就比如第一段 1~x[1].  通过该段其实就相当于是到达x[1]+1点。那么p[x[1]+1]=1-p[x[1]].
但是这个前提是p[1]=1,即起点的概率等于1.对于后面的段我们也是一样的假设,这样就乘起来就是答案了。
 
对于每一段的概率的求法可以通过矩阵乘法快速求出来。
 
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
struct Mat
{
double mat[][];
};
int x[],n;
Mat operator*(Mat a,Mat b)
{
Mat c;
for(int i = ; i < ; i++)
{
for(int j = ; j < ; j++)
c.mat[i][j] = ;
}
for(int i = ; i < ; i++)
{
for(int j = ; j < ; j++)
{
for(int k = ; k < ; k++)
c.mat[i][j] += a.mat[i][k] * b.mat[k][j];
}
}
return c;
}
Mat operator^(Mat a, int k)
{
Mat c;
for(int i = ; i < ; i++)
for(int j = ; j < ; j++)
c.mat[i][j] = (i == j);
while(k)
{
if(k % )
c = c * a;
a = a * a;
k = k / ;
}
return c;
}
int main()
{
double p;
while(scanf("%d%lf", &n,&p) != EOF)
{
for(int i = ; i < n; i++)
scanf("%d", &x[i]);
sort(x, x + n);
Mat tt,temp;
temp.mat[][] = tt.mat[][] = p;
temp.mat[][] = tt.mat[][] = - p;
temp.mat[][] = tt.mat[][] = ;
temp.mat[][] = tt.mat[][] = ; temp = tt ^ (x[] - );
double ans = ;
ans *= ( - temp.mat[][]);
for(int i = ; i < n; i++)
{
if(x[i] == x[i - ])
continue;
temp = tt ^ (x[i] - x[i - ] - ); // 因为要从x[i - 1] + 1开始走,x[i - 1] 是雷
ans *= ( - temp.mat[][]);
}
printf("%0.7lf\n", ans);
}
return ;
}
 

POJ3744Scout YYF I(求概率 + 矩阵快速幂)的更多相关文章

  1. 刷题总结—— Scout YYF I(poj3744 矩阵快速幂+概率dp)

    题目: Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate int ...

  2. Scout YYF I (概率+矩阵快速幂)

    YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's ba ...

  3. 【XSY2612】Comb Avoiding Trees 生成函数 多项式求逆 矩阵快速幂

    题目大意 本题的满二叉树定义为:不存在只有一个儿子的节点的二叉树. 定义一棵满二叉树\(A\)包含满二叉树\(B\)当且经当\(A\)可以通过下列三种操作变成\(B\): 把一个节点的两个儿子同时删掉 ...

  4. HDU4565-数学推导求递推公式+矩阵快速幂

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4565 我们带着这个根号是没法计算的 我们仔细观察一下,(a+sqrt(b))^n用二项式定理展开,我 ...

  5. Just Oj 2017C语言程序设计竞赛高级组A: 求近似值(矩阵快速幂)

    A: 求近似值 时间限制: 1 s      内存限制: 128 MB 提交 我的状态 题目描述 求⌊(5–√+6–√)2n⌋⌊(5+6)2n⌋%9932017. 例如:n=1,(5–√+6–√)2( ...

  6. 2017 ACM-ICPC 亚洲区(西安赛区)网络赛 Coin 概率+矩阵快速幂

    题目链接: https://nanti.jisuanke.com/t/17115 题意: 询问硬币K次,正面朝上次数为偶数. 思路: dp[i][0] = 下* dp[i-1][0] + 上*dp[i ...

  7. HDU 3221 矩阵快速幂+欧拉函数+降幂公式降幂

    装载自:http://www.cnblogs.com/183zyz/archive/2012/05/11/2495401.html 题目让求一个函数调用了多少次.公式比较好推.f[n] = f[n-1 ...

  8. 2019牛客多校第五场 B - generator 1 矩阵快速幂+十倍增+二进制倍增优化

    B - generator 1 题意 给你\(x_{0}.x_{1}.a.b.b.mod\),根据\(x_{i} = a*x_{i-1} + b*x_{i-2}\)求出\(x_{n}\) 思路 一般看 ...

  9. poj4474 Scout YYF I(概率dp+矩阵快速幂)

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4100   Accepted: 1051 Descr ...

随机推荐

  1. C++引用和java引用的区别

    在c++里的引用其实是一个变量的别名,而java则是一个变量存储实际对象的地址和C++指针很相似

  2. 【WPF】WPF通过RelativeSource绑定父控件的属性

    1.后台代码实现绑定父控件的属性 RelativeSource rs = new RelativeSource(RelativeSourceMode.FindAncestor); //设定为离自己控件 ...

  3. Ajax实现异步操作实例_针对XML格式的请求数据

    js分类中有一节[原生js异步请求,XML解析]主要说明了js前台是如何处理XML格式请求和如何接受由服务器返回的XML数据的解析,今天我将用一个实例来说明具体要如何操作. 前台的参数类型也是XML使 ...

  4. pandas 给数据打标签

    import numpy as np import pandas as pd df = pd.DataFrame(np.random.randint(0,100,100), columns=['sco ...

  5. 解决SaveChanges会Hold住之前的错误的问题

    问题描述: 在一次新增操作中,由于有一个必填字段忘记写了,然后直接点击提交,运行到savechanges的地方,程序报错,提示***字段为必填字段. 然后关掉页面,重新填写一次,这次什么都填写上了,一 ...

  6. 动态执行SQL语句

    在实际制作过程中,需要动态的拼接SQL语句然后执行.具体代码如下: declare @columnName varchar(20),@tempName varchar(20) select @temp ...

  7. java方法重载 与 重写

    class ChongZai{ public void a(int a); public void a(Strting a); public void a(int a,int b); } 如上就是一个 ...

  8. Java运算符优先级

    序列号 符号 名称 结合性(与操作数) 目数 说明 1 . 点 从左到右 双目 ( ) 圆括号 从左到右   [ ] 方括号 从左到右   2 + 正号 从右到左 单目 - 负号 从右到左 单目 ++ ...

  9. [CareerCup] 13.5 Volatile Keyword 关键字volatile

    13.5 What is the significance of the keyword "volatile" in C 这道题考察我们对于关键字volatile的理解,顾名思义, ...

  10. WPF Binding INotifyPropertyChanged 多线程 深入理解

    例子 先来看一个例子 Person.cs public class Person : ObservableObject,INotifyPropertyChanged { private string ...