Scout YYF I
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6757   Accepted: 1960

Description

YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's base. After overcoming a series difficulties, YYF is now at the start of enemy's famous "mine road". This is a very long road, on which there are numbers of mines. At first, YYF is at step one. For each step after that, YYF will walk one step with a probability of p, or jump two step with a probality of 1-p. Here is the task, given the place of each mine, please calculate the probality that YYF can go through the "mine road" safely.

Input

The input contains many test cases ended with EOF.
Each test case
contains two lines.
The First line of each test case is N (1 ≤
N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single
blank, standing for the number of mines and the probability to walk one
step.
The Second line of each test case is N integer standing for the place
of N mines. Each integer is in the range of [1, 100000000].

Output

For each test case, output the probabilty in a single line with the
precision to 7 digits after the decimal point.

Sample Input

1 0.5
2
2 0.5
2 4

Sample Output

0.5000000
0.2500000

Source

 
题意:在一条不满地雷的路上,你现在的起点在1处。在N个点处布有地雷,1<=N<=10。地雷点的坐标范围:[1,100000000].
每次前进p的概率前进一步,1-p的概率前进1-p步。问顺利通过这条路的概率。就是不要走到有地雷的地方。
 
设dp[i]表示到达i点的概率,则 初始值 dp[1]=1.
很容易想到转移方程: dp[i]=p*dp[i-1]+(1-p)*dp[i-2];
但是由于坐标的范围很大,直接这样求是不行的,而且当中的某些点还存在地雷。
 
N个有地雷的点的坐标为 x[1],x[2],x[3]```````x[N].
我们把道路分成N段:
1~x[1];
x[1]+1~x[2];
x[2]+1~x[3];
`
`
`
x[N-1]+1~x[N].
 
这样每一段只有一个地雷。我们只要求得通过每一段的概率。乘法原理相乘就是答案。
对于每一段,通过该段的概率等于1-踩到该段终点的地雷的概率。
 
就比如第一段 1~x[1].  通过该段其实就相当于是到达x[1]+1点。那么p[x[1]+1]=1-p[x[1]].
但是这个前提是p[1]=1,即起点的概率等于1.对于后面的段我们也是一样的假设,这样就乘起来就是答案了。
 
对于每一段的概率的求法可以通过矩阵乘法快速求出来。
 
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
struct Mat
{
double mat[][];
};
int x[],n;
Mat operator*(Mat a,Mat b)
{
Mat c;
for(int i = ; i < ; i++)
{
for(int j = ; j < ; j++)
c.mat[i][j] = ;
}
for(int i = ; i < ; i++)
{
for(int j = ; j < ; j++)
{
for(int k = ; k < ; k++)
c.mat[i][j] += a.mat[i][k] * b.mat[k][j];
}
}
return c;
}
Mat operator^(Mat a, int k)
{
Mat c;
for(int i = ; i < ; i++)
for(int j = ; j < ; j++)
c.mat[i][j] = (i == j);
while(k)
{
if(k % )
c = c * a;
a = a * a;
k = k / ;
}
return c;
}
int main()
{
double p;
while(scanf("%d%lf", &n,&p) != EOF)
{
for(int i = ; i < n; i++)
scanf("%d", &x[i]);
sort(x, x + n);
Mat tt,temp;
temp.mat[][] = tt.mat[][] = p;
temp.mat[][] = tt.mat[][] = - p;
temp.mat[][] = tt.mat[][] = ;
temp.mat[][] = tt.mat[][] = ; temp = tt ^ (x[] - );
double ans = ;
ans *= ( - temp.mat[][]);
for(int i = ; i < n; i++)
{
if(x[i] == x[i - ])
continue;
temp = tt ^ (x[i] - x[i - ] - ); // 因为要从x[i - 1] + 1开始走,x[i - 1] 是雷
ans *= ( - temp.mat[][]);
}
printf("%0.7lf\n", ans);
}
return ;
}
 

POJ3744Scout YYF I(求概率 + 矩阵快速幂)的更多相关文章

  1. 刷题总结—— Scout YYF I(poj3744 矩阵快速幂+概率dp)

    题目: Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate int ...

  2. Scout YYF I (概率+矩阵快速幂)

    YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's ba ...

  3. 【XSY2612】Comb Avoiding Trees 生成函数 多项式求逆 矩阵快速幂

    题目大意 本题的满二叉树定义为:不存在只有一个儿子的节点的二叉树. 定义一棵满二叉树\(A\)包含满二叉树\(B\)当且经当\(A\)可以通过下列三种操作变成\(B\): 把一个节点的两个儿子同时删掉 ...

  4. HDU4565-数学推导求递推公式+矩阵快速幂

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4565 我们带着这个根号是没法计算的 我们仔细观察一下,(a+sqrt(b))^n用二项式定理展开,我 ...

  5. Just Oj 2017C语言程序设计竞赛高级组A: 求近似值(矩阵快速幂)

    A: 求近似值 时间限制: 1 s      内存限制: 128 MB 提交 我的状态 题目描述 求⌊(5–√+6–√)2n⌋⌊(5+6)2n⌋%9932017. 例如:n=1,(5–√+6–√)2( ...

  6. 2017 ACM-ICPC 亚洲区(西安赛区)网络赛 Coin 概率+矩阵快速幂

    题目链接: https://nanti.jisuanke.com/t/17115 题意: 询问硬币K次,正面朝上次数为偶数. 思路: dp[i][0] = 下* dp[i-1][0] + 上*dp[i ...

  7. HDU 3221 矩阵快速幂+欧拉函数+降幂公式降幂

    装载自:http://www.cnblogs.com/183zyz/archive/2012/05/11/2495401.html 题目让求一个函数调用了多少次.公式比较好推.f[n] = f[n-1 ...

  8. 2019牛客多校第五场 B - generator 1 矩阵快速幂+十倍增+二进制倍增优化

    B - generator 1 题意 给你\(x_{0}.x_{1}.a.b.b.mod\),根据\(x_{i} = a*x_{i-1} + b*x_{i-2}\)求出\(x_{n}\) 思路 一般看 ...

  9. poj4474 Scout YYF I(概率dp+矩阵快速幂)

    Scout YYF I Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4100   Accepted: 1051 Descr ...

随机推荐

  1. iOS获取窗口当前显示的控制器

    解决类似网易新闻客户端收到新闻推送后,弹出一个UIAlert,然后跳转到新闻详情页面这种需求 1.提供一个UIView的分类方法,这个方法通过响应者链条获取view所在的控制器 - (UIViewCo ...

  2. 如何自定义kindeditor编辑器的工具栏items即去除不必要的工具栏或者保留部分工具栏

    kindeditor编辑器的工具栏主要是指编辑器输入框上方的那些可以操作的菜单,默认情况下编辑器是给予了所有的工具栏.针对不同的用户,不同的项目,不同的环境,可能就需要保留部分工具栏.那么我们应该如何 ...

  3. cannot change version web module 3.0

    eclipse如何修改dynamic web module version 由于从SVN down下来的工程java及tomcat 版本比本地高,导致工程不能编译,报以下错误. 1.Java comp ...

  4. OAF 使用 javascript 使某个按钮在5秒内不能重复点击

    首先要保证按钮是BUTTON,并且按钮事件设置firePartialAction. public class CuxXXXXPGCO extends OAControllerImpl { public ...

  5. SQL Server优化50法

    查询速度慢的原因很多,常见如下几种:    1.没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)    2.I/O吞吐量小,形成了瓶颈效应.    3.没有创建计算列导致查询不优化 ...

  6. Caffe学习系列(19): 绘制loss和accuracy曲线

    如同前几篇的可视化,这里采用的也是jupyter notebook来进行曲线绘制. // In [1]: #加载必要的库 import numpy as np import matplotlib.py ...

  7. GEOS库学习之四:几何关系判断

    原理上一篇已经介绍过了,这篇就直接进行程序练习 #include "geos.h" GeometryFactory factory; //创建一条环线,与线的区别就是环线是闭合的. ...

  8. 关于matlab中特殊字符, 上标和下标

    'T=25\circC',(摄氏度) 下标用 _{下划线} 上标用^ (尖号) 希腊字母等特殊字符用 α \alpha β \beta γ \gamma θ \theta Θ \Theta Г \Ga ...

  9. Kindeditor(JSP)& 上传目录不存在

    一.基本配置 Kindeditor是一款富文本编辑器,作用跟博客园写文章用的这个编辑器一样,都是为了让文本加入各种各样的修饰元素. 使用方法如下,解压缩,把期中的ASP\NET\PHP文件夹都删除,然 ...

  10. Windows下apache php wordpress配置

    2. Use notepad to open httpd.conf config file. Make use the line "LoadModule rewrite_module mod ...