http://tyvj.cn/Problem_Show.aspx?id=1338

时间才排到rank7,还不快啊囧。isap我常数都写得那么小了。。。

最大权闭合图看我另一篇博文吧

此题很明显的模型。

首先我们先染色,使整个图黑白相间,其中我们只需要在黑色点向对应的上下左右白色节点连边,很明显,这些节点都有权值,我们需要求的是最大权,那么就按我的博文那样来做即可。

upd:本题并不是裸的最大权闭合图模型,而是最小割模型,即我们将问题转换为:去掉“同时取冲突的格子”的情况得到“不冲突”。即最小化“同时取冲突的格子”,将所有格子放到一个流网络,其中s连接白(黑)格子,t连接黑(白)格子,相邻的黑白格子连接容量oo,那么一个最小割[s, t]对应一个简单割,且简单割对应一种方案。

用sum-最小割就是答案。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define read(a) a=getnum()
#define print(a) printf("%d", a)
inline int getnum() { int ret=0; char c; for(c=getchar(); c<'0' || c>'9'; c=getchar()); for(; c>='0' && c<='9'; c=getchar()) ret=ret*10+c-'0'; return ret; } const int N=40005, M=N*4*2, oo=~0u>>2;
int ihead[N], inext[M], from[M], to[M], cap[M], cnt=1;
int gap[N], d[N], cur[N], p[N]; inline void add(const int &u, const int &v, const int &w) {
inext[++cnt]=ihead[u]; ihead[u]=cnt; from[cnt]=u; to[cnt]=v; cap[cnt]=w;
inext[++cnt]=ihead[v]; ihead[v]=cnt; from[cnt]=v; to[cnt]=u; cap[cnt]=0;
} inline int isap(const int &s, const int &t, const int &n) {
int u=s, f, i, flow=0;
for1(i, 0, n) cur[i]=ihead[i];
gap[0]=n;
while(d[s]<n) {
for(i=cur[u]; i; i=inext[i]) if(cap[i] && d[u]==d[to[i]]+1) break;
if(i) {
cur[u]=i; p[to[i]]=i; u=to[i];
if(u==t) {
for(f=oo; u!=s; u=from[p[u]]) f=min(f, cap[p[u]]);
for(u=t; u!=s; u=from[p[u]]) cap[p[u]]-=f, cap[p[u]^1]+=f;
flow+=f;
}
}
else {
if(!(--gap[d[u]])) break;
d[u]=n;
cur[u]=ihead[u];
for(i=ihead[u]; i; i=inext[i]) if(cap[i] && d[u]>d[to[i]]+1)
d[u]=d[to[i]]+1;
++gap[d[u]];
if(u!=s) u=from[p[u]];
}
}
return flow;
} int main() {
int t, u, n;
read(n);
int S=0, T=n*n+1;
int sum=0, last;
for1(i, 1, n) {
last=i;
for1(j, 1, n) {
read(t); sum+=t;
u=(i-1)*n+j;
if(last%2) {
if(i>1) add(u, u-n, oo);
if(i<n) add(u, u+n, oo);
if(j>1) add(u, u-1, oo);
if(j<n) add(u, u+1, oo);
add(S, u, t);
}
else add(u, T, t);
++last;
}
}
printf("%d\n", sum-isap(S, T, T+1)); return 0;
}

背景 Background

Sandytea前段时间沉迷于QQ农场中……一天夜里,他梦见来到好友X的农场上……

描述 Description

这个农场和游戏中略有不同。土地实际上是一个边长为N的正方形,由N*N块土地组成。
在每块土地上,都种有一种农作物。如果他选择摘取一块土地上的农作物,就能获得一个固定的利润(当然,这个利润是正数)。不同土地上的利润多半是不同的。
贪心的Sandytea本想摘取所有土地上的农作物。但是正当他准备行动时,却被告知不允许摘取了两块有公共边的土地上的作物,否则就会被主人的狗发现。
Sandytea想知道,在不被狗抓住的前提下,他能获得的最大利益是多少。

输入格式 InputFormat

第一行:一个整数N,表示土地是一个边长为N的正方形。
下面N行:每行N个正整数,描述了各块土地上的农作物的单位价值。

输出格式 OutputFormat

输出一行,包含一个整数,为最大的收益。

样例输入 SampleInput [复制数据]

2
7 7
54 54

样例输出 SampleOutput [复制数据]

61

数据范围和注释 Hint

数据范围:
有10分的数据满足:N≤6
另有20分的数据满足:N≤13
另有30分的数据满足:N≤50
另有40分的数据满足:N≤200
所有数据满足:每块土地上作物的价值不超过100。

来源 Source

改编自SPOJ

【TYVJ】1338 QQ农场(最大流+最大权闭合图)的更多相关文章

  1. BZOJ_1565_[NOI2009]_植物大战僵尸_(Tarjan+最大流+最大权闭合图)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1565 n*m的矩阵,可以种植植物,僵尸从图的右边进入吃植物.前面的植物可以保护后面的植物,还有 ...

  2. POJ_2987_Firing_(最大流+最大权闭合图)

    描述 http://poj.org/problem?id=2987 要炒员工鱿鱼,炒了一个人,他的下属一定被炒.给出每个人被炒后公司的收益(负值表示亏损),问怎样炒公司收益最大,以及这种方法炒了几个人 ...

  3. BZOJ_1497_[NOI2006]_最大获利_(最大流+最大权闭合图)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1497 共n个站点,给出建立每个站点所需要的花费.现在有m个客户需要开通服务,每个客户需要有两个 ...

  4. [网络流24题] 太空飞行计划问题 (最大流->最大权闭合图)

    洛谷传送门 LOJ传送门 做这道题之前建议先看这篇论文,虽然论文里很多地方用了很多术语,但hbt神犇讲得很明白 这篇题解更加偏向于感性理解 把问题放到二分图上,左侧一列点是实验,权值为$p[i]$,右 ...

  5. [网络流24题] 方格取数问题/骑士共存问题 (最大流->最大权闭合图)

    洛谷传送门 LOJ传送门 和太空飞行计划问题一样,这依然是一道最大权闭合图问题 “骑士共存问题”是“方格取数问题”的弱化版,本题解不再赘述“骑士共存问题”的做法 分析题目,如果我们能把所有方格的数都给 ...

  6. [luoguP2762] 太空飞行计划问题(最大权闭合图—最小割—最大流)

    传送门 如果将每一个实验和其所对的仪器连一条有向边,那么原图就是一个dag图(有向无环) 每一个点都有一个点权,实验为收益(正数),仪器为花费(负数). 那么接下来可以引出闭合图的概念了. 闭合图是原 ...

  7. tyvj P1135 - 植物大战僵尸 最大权闭合图

    P1135 - 植物大战僵尸 From ytt    Normal (OI)总时限:10s    内存限制:128MB    代码长度限制:64KB 背景 Background 虽然这么多天了,,虽然 ...

  8. poj 2987 最大权闭合图

    Language: Default Firing Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 8744   Accept ...

  9. 最大权闭合图 && 【BZOJ】1497: [NOI2006]最大获利

    http://www.lydsy.com/JudgeOnline/problem.php?id=1497 最大权闭合图详细请看胡伯涛论文<最小割模型在信息学竞赛中的应用>,我在这里截图它的 ...

随机推荐

  1. linux zookeeper 原理详解

    http://cailin.iteye.com/blog/2014486  直接打开此链接即可 --------------------------------------------------   ...

  2. Java获取、删除文件和目录

    package javatest; import java.io.File; import java.util.ArrayList; import java.util.regex.Pattern; c ...

  3. centos rm -rf 恢复删除的文件

    Linux有时候执行了 rm -rf 等操作误删了文件绝对是一件可怕的事情,好在有一些解决的办法可以临时救急.这时我们就要用到一款叫做extundelete的工具了. 目录[-] 依赖 安装 查找要恢 ...

  4. A PHP extension for Facebook's RocksDB

    A PHP extension for Facebook's RocksDB 31 commits 2 branches 0 releases 2 contributors C++ 90.5% C 8 ...

  5. MySQL性能优化的最佳经验

    今天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显.关于数据库的性能,这并不只是DBA才需要担心的事,而这更是我们程序员需要去关注的事情.当我们去设计数据库表结构,对操作数据 ...

  6. 【云计算】Docker云平台—Docker基础

    Docker云平台系列共三讲,此为第一讲:Docker基础 参考资料: Docker官方文档:https://docs.docker.com/ Docker从入门到实践:https://yeasy.g ...

  7. HashMap实现原理分析(详解)

    1. HashMap的数据结构 http://blog.csdn.net/gaopu12345/article/details/50831631   ??看一下 数据结构中有数组和链表来实现对数据的存 ...

  8. mybatis3 :insert返回插入的主键(selectKey)

    Mysql: 主键自增长. 加上:keyProperty="id"就可以获得了. <insert id="insert" parameterType=&q ...

  9. 分页管理的AJAX实现

    bookMgr.jsp <%-- Document : bookMgr.jsp Created on : 2016-11-7, 9:48:21 Author : guanghe --%> ...

  10. swift复合类型

     1.元组类型 (tuple) 元组就是多个元素的组合,是一个用圆括号括起来分号分隔的多个数据的一个集合体. 例如:定义一个学生变量,要求姓名 jim,年龄 19,性别 male 的元组变量为  // ...