bzoj1047-理想的正方形(二维单调队列)
题意: 给一个矩阵,给出行列和每个数,再给出一个N,求出所有N*N的子矩阵中最大值最小值之差的最小值
解析: 暴力枚举肯定不行,这题可以用二维单调队列做,把同一行的连续N个点缩成一个点保存最大最小值预处理
,用单调队列即可实现,再对整个矩阵进行枚举,再用一次单调队列。
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cmath>
using namespace std;
const int INF=1e9+;
const int maxn=;
int row,col,N;
int A[maxn][maxn];
int Min[maxn][maxn],Max[maxn][maxn];
int q1[maxn],q2[maxn];
int f1,f2,r1,r2;
void init() //预处理
{
for(int i=;i<=row;i++)
{
f1=,r1=;
f2=,r2=;
for(int j=;j<N;j++)
{
while(r1>=f1&&A[i][q1[r1]]>=A[i][j]) r1--;
q1[++r1]=j;
while(r2>=f2&&A[i][q2[r2]]<=A[i][j]) r2--;
q2[++r2]=j;
}
for(int j=N;j<=col;j++)
{
while(r1>=f1&&A[i][q1[r1]]>=A[i][j]) r1--;
q1[++r1]=j;
while(q1[f1]+N<=j) f1++;
Min[i][j-N+]=A[i][q1[f1]]; //缩点后的最小值 while(r2>=f2&&A[i][q2[r2]]<=A[i][j]) r2--;
q2[++r2]=j;
while(q2[f2]+N<=j) f2++;
Max[i][j-N+]=A[i][q2[f2]]; //缩点后的最大值
}
}
}
int solve()
{
int ret=INF;
for(int j=;j+N-<=col;j++) //对同一列进行枚举
{
f1=,r1=;
f2=,r2=;
int minv=INF,maxv=-INF;
for(int i=;i<N;i++)
{
while(r1>=f1&&Min[q1[r1]][j]>=Min[i][j]) r1--;
q1[++r1]=i;
while(r2>=f2&&Max[q2[r2]][j]<=Max[i][j]) r2--;
q2[++r2]=i;
}
for(int i=N;i<=row;i++)
{
while(r1>=f1&&Min[q1[r1]][j]>=Min[i][j]) r1--;
q1[++r1]=i;
while(q1[f1]+N<=i) f1++;
minv=Min[q1[f1]][j];
while(r2>=f2&&Max[q2[r2]][j]<=Max[i][j]) r2--;
q2[++r2]=i;
while(q2[f2]+N<=i) f2++;
maxv=Max[q2[f2]][j];
ret=min(ret,maxv-minv);
}
}
return ret;
}
int main()
{
scanf("%d%d%d",&row,&col,&N);
for(int i=;i<=row;i++)
for(int j=;j<=col;j++) scanf("%d",&A[i][j]);
init();
printf("%d\n",solve());
return ;
}
bzoj1047-理想的正方形(二维单调队列)的更多相关文章
- [BZOJ1047][HAOI2007]理想的正方形 二维单调队列
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1047 我们对每矩阵的一列维护一个大小为$n$的单调队列,队中元素为矩阵中元素.然后扫描每一 ...
- bzoj1047 [HAOI2007]理想的正方形——二维单调队列
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1047 就是先对行做一遍单调队列,再对那个结果按列做一遍单调队列即可. 代码如下: #incl ...
- 【二维单调队列】BZOJ1047-[HAOI2007]理想的正方形
[题目大意] 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. [思路] 裸的二维单调队列.二维单调队列的思路其实很简单: (1)对于每 ...
- 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列
题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1 ...
- [luoguP2216] [HAOI2007]理想的正方形(二维单调队列)
传送门 1.先弄个单调队列求出每一行的区间为n的最大值最小值. 2.然后再搞个单调队列求1所求出的结果的区间为n的最大值最小值 3.最后扫一遍就行 懒得画图,自己体会吧. ——代码 #include ...
- BZOJ1047[HAOI2007]理想的正方形——二维ST表
题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非 ...
- 【bzoj1047】[HAOI2007]理想的正方形 二维RMQ
题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非 ...
- [HAOI2007]理想的正方形 st表 || 单调队列
~~~题面~~~ 题解: 因为数据范围不大,而且题目要求的是正方形,所以这道题有2种解法. 1,st表. 这种解法暴力好写好理解,但是较慢.我们设st[i][j][k]表示以(i, j)为左端点,向下 ...
- BZOJ 1047 二维单调队列
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1047 题意:见中文题面 思路:该题是求二维的子矩阵的最大值与最小值的差值尽量小.所以可以考 ...
随机推荐
- Apache Hadoop最佳实践和反模式
摘要:本文介绍了在Apache Hadoop上运行应用程序的最佳实践,实际上,我们引入了网格模式(Grid Pattern)的概念,它和设计模式类似,它代表运行在网格(Grid)上的应用程序的可复用解 ...
- cURL中的超时设置
访问HTTP方式很多,可以使用curl, socket, file_get_contents() 等方法. 在访问http时,需要考虑超时的问题. CURL访问HTTP: CURL 是常用的访问HTT ...
- bat文件调用shutdown命令不生效问题原因
背景: 本人使用云桌面办公,但是用于登陆云桌面的终端运行卡顿,每次开机要20min才能登陆云桌面,所以: 1)在BIOS设置了定时开关,让终端提前开机 2)在系统上层,开机启动项增加一个bat文件(s ...
- HDU 2435 There is a war (网络流-最小割)
There is a war Problem Description There is a sea. There are N islands in the sea. ...
- android键盘事件
在main.xml文件中代码如下: <?xml version="1.0" encoding="utf-8"?> <LinearLayout ...
- c++11 : static_assert和 type traits
static_assert提供一个编译时的断言检查.如果断言为真,什么也不会发生.如果断言为假,编译器会打印一个特殊的错误信息. 1 2 3 4 5 6 7 8 9 10 11 12 13 templ ...
- Java基础知识强化61:经典查找之 常见查找算法小结
一.顺序查找 条件:无序或有序队列. 原理:按顺序比较每个元素,直到找到关键字为止. 时间复杂度:O(n) 二.二分查找(折半查找) 条件:有序数组 原理:查找过程从数组的中间元素开始,如果中间元素正 ...
- 服务 通话录音 TelephonyManager
MainActivity public class MainActivity extends ListActivity { private BatteryChangedReceiver rec ...
- [c#]asp.net开发微信公众平台(5)微信图文消息
上篇已经成功响应了关注事件,也实现了文本消息的发送,这篇开始图文消息处理, 微信中最常用的消息类型就是图文消息了,因为它图文并茂,最能表达信息. 图文消息在微信中的接口定义如下: <xml> ...
- iOS开发中的MVC设计模式
我们今天谈谈cocoa程序设计中的 模型-视图-控制器(MVC)范型.我们将从两大方面来讨论MVC: 什么是MVC? M.V.C之间的交流方式是什么样子的? 理解了MVC的概念,对cocoa程序开发是 ...