Modular Inverse(模逆元,扩展欧几里德)
Modular Inverse
Time Limit: 2 Seconds Memory Limit: 65536 KB
The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m). This is equivalent to ax≡1 (mod m).
Input
There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.
Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.
Output
For each test case, output the smallest positive x. If such x doesn't exist, output "Not Exist".
Sample Input
3
3 11
4 12
5 13
Sample Output
4
Not Exist
8
题解:求最小正整数解,其实吧,x的通解是x0+b/gcd*t,由于t是整数,那么ans=x0+b/gcd*t=x0 mod b=x0%b;因为ans要是正整数的,
所以当b/gcd是负的时候,就等于绝对值就好了,因为还有t啊,当x0%b负时,加上一个b;就妥了;因为ans=(x0+b)%b;
代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int INF=0x3f3f3f3f;
typedef long long LL;
void e_gcd(LL a,LL b,LL &d,LL &x,LL &y){
if(!b){
d=a;
x=;
y=;
}
else{
e_gcd(b,a%b,d,x,y);
LL temp=x;
x=y;
y=temp-a/b*y;
}
}
LL cal(int a,int b,int c){
LL x,y,d;
e_gcd(a,b,d,x,y);
if(c%d!=)return -;//ax+by=c/(c/gcd);
x*=c/d;
b/=d;//因为x的通解是x0+(b/gcd)t;
if(b<)b=-b;
LL ans=x%b;
if(ans<=)ans+=b;
return ans;
}
int main(){
LL T,a,b,d,x,y;
scanf("%d",&T);
while(T--){
scanf("%lld%lld",&a,&b);
LL ans=cal(a,b,);
if(ans==-)puts("Not Exist");
else printf("%lld\n",ans);
}
return ;
}
题上数据比较水,数据范围1000,暴力一下就可以了:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int INF=0x3f3f3f3f;
typedef long long LL;
int main(){
int T,a,m;
scanf("%d",&T);
while(T--){//(1-ax)%m;
scanf("%d%d",&a,&m);
int flot=;
for(int x=;x<=;x++){
if((-a*x)%m==){
flot=;
printf("%d\n",x);
break;
}
}
if(flot)continue;
puts("Not Exist");
}
return ;
}
Modular Inverse(模逆元,扩展欧几里德)的更多相关文章
- 51Nod 1256 求乘法逆元--扩展欧几里德
#include<stdio.h> int exgcd(int a,int b,int &x,int &y) { ) { x=; y=; return a; } int r ...
- ZOJ 3609 Modular Inverse(拓展欧几里得求最小逆元)
Modular Inverse Time Limit: 2 Seconds Memory Limit: 65536 KB The modular modular multiplicative ...
- CodeForces 146E - Lucky Subsequence DP+扩展欧几里德求逆元
题意: 一个数只含有4,7就是lucky数...现在有一串长度为n的数...问这列数有多少个长度为k子串..这些子串不含两个相同的lucky数... 子串的定义..是从这列数中选出的数..只要序号不同 ...
- POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))
d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...
- Modular Inverse(zoj3609+欧几里德)
Modular Inverse Time Limit: 2 Seconds Memory Limit: 65536 KB The modular modular multiplicative ...
- HDU 3923 Invoker(polya定理+乘法逆元(扩展欧几里德+费马小定理))
Invoker Time Limit : 2000/1000ms (Java/Other) Memory Limit : 122768/62768K (Java/Other) Total Subm ...
- 公钥密码之RSA密码算法扩展欧几里德求逆元!!
扩展欧几里得求逆元 实话说这个算法如果手推的话问题不大,无非就是辗转相除法的逆过程,还有一种就是利用扩展欧几里德算法,学信安数学基础的时候问题不大,但现在几乎都忘了,刷题的时候也是用kuangbin博 ...
- POJ-1061青蛙的约会,扩展欧几里德求逆元!
青蛙的约会 以前不止一次看过这个题,但都没有去补..好吧,现在慢慢来做. 友情提示 ...
- 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...
随机推荐
- MySQL 基础学习
http://www.w3school.com.cn/sql/ 1.limit x,y 或 limit z :选取从x开始的y条数据 或 选取最开始的 z条数据 , 2.like '%N%' : ...
- check the manual that corresponds to your MySQL server version for the right syntax的错误解析
错误原因一:SQL关键字冲突 分析:例:把desc命名为字段名 错误原因二:$right=$DB->fetch_one_array("SELECT rsnumber FROM &quo ...
- LaTeX空格
由于LaTeX 采用的是源文件编译方式, 默认LaTeX会忽略多余的空格, 如果需要产生一个空格,可以使用 命令 \, 注意代表的是空间键. 例如: Jones, et al.\ (1993), ...
- 剑指offer——从尾到头打印链表节点的值
输入一个链表,从尾到头打印链表每个节点的值. 输入描述:输入为链表的表头 输出描述:输出为需要打印的“新链表”的表头 一.问题分析 初拿到这个题目时,这应该是考察单向链表这一数据结构.单向链表的遍历总 ...
- Highlight On Mouseover Effect With JQuery
How to get the xpath by clicking an html element How to get the xpath by clicking an html element Qu ...
- redis的分布式解决方式--codis
codis是豌豆荚开源的分布式server.眼下处于稳定阶段. 原文地址:https://github.com/wandoulabs/codis/blob/master/doc/tutorial_zh ...
- java web分享ppt大纲 -- servlet包
概述 servlet相关代码所在包: javax.servlet javax.servlet.http 常用的功能模块 Servlet,filter,listener 常用的相关类: servlet ...
- Lable 控件 -- 用代码改变要显示字体的颜色
lable控件怎么改变显示字体的颜色 代码如下: string color = "#B72C34"; this.lbl.ForeColor = System.Drawing.Col ...
- HTML5入门(一)
HTML简单介绍: HTML(HyperText Markup Language),超文本标记语言,是一种专门用于创建web的超文本文档编程语言,是我们看到的网页的源代码. 版本简介: 1997年推出 ...
- zoj 2067 White Rectangles
这题解决的算法处理,真的很难想清楚!!尤其是最后的正矩形如何处理.不过终于看懂了 #include<stdio.h> #include<stdlib.h> #include&l ...