Modular Inverse


Time Limit: 2 Seconds      Memory Limit: 65536 KB

The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1x (mod m). This is equivalent to ax≡1 (mod m).

Input

There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.

Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.

Output

For each test case, output the smallest positive x. If such x doesn't exist, output "Not Exist".

Sample Input

3
3 11
4 12
5 13

Sample Output

4
Not Exist
8
题解:求最小正整数解,其实吧,x的通解是x0+b/gcd*t,由于t是整数,那么ans=x0+b/gcd*t=x0 mod b=x0%b;因为ans要是正整数的,
所以当b/gcd是负的时候,就等于绝对值就好了,因为还有t啊,当x0%b负时,加上一个b;就妥了;因为ans=(x0+b)%b;
代码:
 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int INF=0x3f3f3f3f;
typedef long long LL;
void e_gcd(LL a,LL b,LL &d,LL &x,LL &y){
if(!b){
d=a;
x=;
y=;
}
else{
e_gcd(b,a%b,d,x,y);
LL temp=x;
x=y;
y=temp-a/b*y;
}
}
LL cal(int a,int b,int c){
LL x,y,d;
e_gcd(a,b,d,x,y);
if(c%d!=)return -;//ax+by=c/(c/gcd);
x*=c/d;
b/=d;//因为x的通解是x0+(b/gcd)t;
if(b<)b=-b;
LL ans=x%b;
if(ans<=)ans+=b;
return ans;
}
int main(){
LL T,a,b,d,x,y;
scanf("%d",&T);
while(T--){
scanf("%lld%lld",&a,&b);
LL ans=cal(a,b,);
if(ans==-)puts("Not Exist");
else printf("%lld\n",ans);
}
return ;
}

题上数据比较水,数据范围1000,暴力一下就可以了:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int INF=0x3f3f3f3f;
typedef long long LL;
int main(){
int T,a,m;
scanf("%d",&T);
while(T--){//(1-ax)%m;
scanf("%d%d",&a,&m);
int flot=;
for(int x=;x<=;x++){
if((-a*x)%m==){
flot=;
printf("%d\n",x);
break;
}
}
if(flot)continue;
puts("Not Exist");
}
return ;
}

Modular Inverse(模逆元,扩展欧几里德)的更多相关文章

  1. 51Nod 1256 求乘法逆元--扩展欧几里德

    #include<stdio.h> int exgcd(int a,int b,int &x,int &y) { ) { x=; y=; return a; } int r ...

  2. ZOJ 3609 Modular Inverse(拓展欧几里得求最小逆元)

    Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative ...

  3. CodeForces 146E - Lucky Subsequence DP+扩展欧几里德求逆元

    题意: 一个数只含有4,7就是lucky数...现在有一串长度为n的数...问这列数有多少个长度为k子串..这些子串不含两个相同的lucky数... 子串的定义..是从这列数中选出的数..只要序号不同 ...

  4. POJ - 2115 C Looooops(扩展欧几里德求解模线性方程(线性同余方程))

    d.对于这个循环, for (variable = A; variable != B; variable += C) statement; 给出A,B,C,求在k位存储系统下的循环次数. 例如k=4时 ...

  5. Modular Inverse(zoj3609+欧几里德)

    Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative ...

  6. HDU 3923 Invoker(polya定理+乘法逆元(扩展欧几里德+费马小定理))

    Invoker Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 122768/62768K (Java/Other) Total Subm ...

  7. 公钥密码之RSA密码算法扩展欧几里德求逆元!!

    扩展欧几里得求逆元 实话说这个算法如果手推的话问题不大,无非就是辗转相除法的逆过程,还有一种就是利用扩展欧几里德算法,学信安数学基础的时候问题不大,但现在几乎都忘了,刷题的时候也是用kuangbin博 ...

  8. POJ-1061青蛙的约会,扩展欧几里德求逆元!

                                                               青蛙的约会 以前不止一次看过这个题,但都没有去补..好吧,现在慢慢来做. 友情提示 ...

  9. 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm

    欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...

随机推荐

  1. apache hide index.php

    <Directory "D:/usr/local/www">    AllowOverride all    Options +FollowSymLinks +SymL ...

  2. Java学习之基本数据类型

    基本类型,或者叫做内置类型,是JAVA中不同于类的特殊类型.它们是我们编程中使用最频繁的类型.java是一种强类型语言,第一次申明变量必须说明数据类型,第一次变量赋值称为变量的初始化. 1. Java ...

  3. ByteBuffer常用方法详解

    原文  http://blog.csdn.net/u012345283/article/details/38357851 缓冲区(Buffer)就是在内存中预留指定大小的存储空间用来对输入/输出(I/ ...

  4. Java文本编辑器中遇到的问题详解

    今天介绍文件的读取和写入,分别用FileReader,FileWriter 1,FileWriter类(字符输出流类) 构造方法:FileWriter fw = new FileWriter(Stri ...

  5. java计算器

       由于自己的实验报告 需要用Java来写一个实验报告.自己本没有怎么学过Java,但是学的话也就认真的学一下,毕竟技术这条路线是技多不压身.于是在网站上找来了一些资料,关于Java到底是干什么的, ...

  6. codeforces 650B . Image Preview 二分

    题目链接 B. Image Preview time limit per test 1 second memory limit per test 256 megabytes input standar ...

  7. python collections中Counter类

    Counter是dict的一个子类,因此具有dict的属性与方法.如常用的iteritems, items, get, pop. class Counter(dict): 如果Key不存在,将返回0, ...

  8. 查看ORACLE 数据库及表信息

    -- 查看ORACLE 数据库中本用户下的所有表 SELECT table_name FROM user_tables; -- 查看ORACLE 数据库中所有用户下的所有表 select user,t ...

  9. linux 6.4平台利用rman迁移oracle 11g r2数据库

    测试环境分别在虚拟机安装A,B主机 系统:linux 6.4, 数据库:oracle 11g r2 A主机:安装oracle 11g r2数据库 B主机:只安装oracle 11g r2软件 第一步, ...

  10. semver语义化版本号

    semver语义化版本号 语义化版本号各位置的含义 版本号:X.Y.Z X: 代表发生了不兼容的API改变 Y: 代表向后兼容的功能性变化 Z: 代表向后兼容bug fixes 语义化版本号示例 1. ...