传送门

时间限制:18000ms
单点时限:2000ms
内存限制:512MB

描述

小h拥有$n$位朋友。每位朋友拥有一个数值$V_i$代表他与小h的亲密度。亲密度有可能发生变化。
岁月流逝,小h的朋友们形成了一种稳定的树状关系。每位朋友恰好对应树上的一个节点。
每次小h想请两位朋友一起聚餐,他都必须把连接两位朋友的路径上的所有朋友都一起邀请上。并且聚餐的花费是这条路径上所有朋友的亲密度乘积。
小h很苦恼,他需要知道每一次聚餐的花销。小h问小y,小y当然会了,他想考考你。

输入

输入文件第一行是一个整数 $n$,表示朋友的数目,从 $1$ 开始编号。
输入文件第二行是 $n$ 个正整数 $V_i$,表示每位朋友的初始的亲密度。
接下来 $n-1$ 行,每行两个整数 $u$ 和 $v$,表示 $u$ 和 $v$ 有一条边。
然后是一个整数 $m$,代表操作的数目。每次操作为两者之一:
$0\ u\ v$ 询问邀请朋友 $u$ 和 $v$ 聚餐的花费

$1\  u\ v$ 改变朋友 $u$ 的亲密度为 $v$

$1\le n,m\le 5\times 10^5$

$V_i\le 10^9$

输出

对于每一次询问操作,你需要输出一个整数,表示聚餐所需的花费。你的答案应该模 $1,000,000,007$ 输出。
样例输入

3
    1 2 3
    1 2
    2 3
    5
    0 1 2
    0 1 3
    1 2 3
    1 3 5
    0 1 3

样例输出

2
    6
    15


Solution

比较裸的做法是树链剖分,我试了一发,但这题数据较大,会TLE ,不过据说LCT可以水过, 然而我不会LCT。

正解:DFS序 + 树状数组/线段树,询问和更新复杂度都是 $O(\log{n})$。

对节点 $u$,将根节点到 $u$ 的路径上的点的权值之积维护成前缀积,记作 $pro[u]$。

显然 $u$ 到 $v$ 路径上节点的权值之积可表示为:

\[\dfrac{pro[u] \times pro[v] \times a[lca(u, v)]}{(pro[lca(u, v)])^2},\]

上式中 $a[x]$ 表示节点 $x$ 的权值。

不过我一开始把这个式子搞错了:

\[\dfrac{pro[u]\times pro[v]}{pro[lca(u, v)]}\]

WA了N发,真是太SB了。。。

其他的坑点:

连乘时要边乘边模,否则会爆long long。

教训:

调用函数时要留意一下参数类型。

Implementation

#include <bits/stdc++.h>
using namespace std; const int N{<<}, M(1e9+);
typedef long long LL; LL bit[N];
int n; LL pro(int x){
LL res=;
for(; x; res=res*bit[x]%M, x-=x&-x);
return res;
} void mul(int x, int v){
for(; x&&x<=n; bit[x]=bit[x]*v%M, x+=x&-x);
} LL Pow(LL x, int n){
LL res=;
for(; n; x*=x, x%=M, n>>=)
if(n&) res*=x, res%=M;
return res;
} LL inv(int x){
return Pow(x, M-);
} int a[N], tail, fa[N][], dep[N], L[N], R[N];
vector<int> g[N]; void dfs(int u, LL p, int f){
fa[u][]=f, dep[u]=dep[f]+;
for(int i=; i<; i++) fa[u][i]=fa[fa[u][i-]][i-];
L[u]=++tail;
mul(tail, inv(pro(tail-))*p%M);
for(auto &v:g[u])
if(v!=f) dfs(v, p*a[v]%M, u);
R[u]=tail;
} int LCA(int u, int v){
if(dep[u]<dep[v]) swap(u, v);
int diff=dep[u]-dep[v];
for(int i=; i<; i++)
if(diff&<<i) u=fa[u][i];
if(u==v) return u;
for(int i=; i>=; i--)
if(fa[u][i] != fa[v][i]) u=fa[u][i], v=fa[v][i];
return fa[u][];
} int main(){
cin>>n;
for(int i=; i<=n; i++)
scanf("%d", a+i), bit[i]=; for(int u, v, i=; i<n; i++)
scanf("%d%d", &u, &v), g[u].push_back(v), g[v].push_back(u);
dfs(, a[], ); int m; cin>>m;
for(int t, u, v; m--; ){
scanf("%d%d%d", &t, &u, &v);
if(t==){
int w=LCA(u, v);
LL t=pro(L[w]);
LL res=pro(L[u])*pro(L[v])%M*inv(t*t%M)%M*a[w]%M;
printf("%lld\n", res); //error-prone
}
else{
mul(L[u], inv(a[u])*v%M), mul(R[u]+, a[u]*inv(v)%M), a[u]=v; //error-prone
}
}
}

hihocoder 1347 小h的树上的朋友的更多相关文章

  1. hihocoder-1347 小h的树上的朋友(lca+线段树)

    题目链接: 小h的树上的朋友 时间限制:18000ms 单点时限:2000ms 内存限制:512MB 描述 小h拥有n位朋友.每位朋友拥有一个数值Vi代表他与小h的亲密度.亲密度有可能发生变化. 岁月 ...

  2. hihoCoder 1513 小Hi的烦恼

    hihoCoder 1513 小Hi的烦恼 思路: 用bitset判断交集个数 代码: #include<bits/stdc++.h> using namespace std; #defi ...

  3. 【渗透笔记】拿下某小H网的全过程

    自从班上A片小王子的7个T资源被封了以后,本小白为造福全班同学,尝试拿下个小H网,先用webrobot搜某些只有小H网才会出现的关键词 本以为直接导出放御剑里跑就行了,然并软.于是用awvs扫了一下, ...

  4. 一个简洁的小H车调运模型

    一个简洁的小H车调运模型 不久前, 帝都B城市到处都是小H车, 理想的小H车应该是布朗运动\均匀分布,可是现实上它们就是不均匀.于是有如下问题: 观察帝都 HD区SY村区域,将其划分成10个用车点,用 ...

  5. hihocoder#1513 : 小Hi的烦恼 bitset

    目录 题目链接 题解 代码 题目链接 hihocoder#1513 : 小Hi的烦恼 题解 cdq 套cdq 套cdq 套cdq就完了呀 对每一科开n个bitset 表示该科目前i个有谁 每次查询都& ...

  6. 小H和密码

    链接:https://www.nowcoder.com/acm/contest/72/B来源:牛客网 题目描述     小H在击败怪兽后,被一个密码锁挡住了去路     密码锁由N个转盘组成,编号为1 ...

  7. 【Wannafly挑战赛10 - B】小H和密码(DP)

    试题链接:https://www.nowcoder.com/acm/contest/72/B 题目描述     小H在击败怪兽后,被一个密码锁挡住了去路     密码锁由N个转盘组成,编号为1~N,每 ...

  8. BZOJ1505: [NOI2004]小H的小屋

    BZOJ1505: [NOI2004]小H的小屋 Description 小H发誓要做21世纪最伟大的数学家.他认为,做数学家与做歌星一样,第一步要作好包装,不然本事再大也推不出去. 为此他决定先在自 ...

  9. Wannafly挑战赛10:A题:小H和迷宫

    题目描述       小H陷入了一个迷宫中,迷宫里有一个可怕的怪兽,血量有N点,小H有三瓶魔法药水,分别可以使怪兽损失a%.b%.c%的血量(之后怪兽的血量会向下取整),小H想合理地运用这三瓶药水,使 ...

随机推荐

  1. jQuery 之 Callback 实现

    在 js 开发中,由于没有多线程,经常会遇到回调这个概念,比如说,在 ready 函数中注册回调函数,注册元素的事件处理等等.在比较复杂的场景下,当一个事件发生的时候,可能需要同时执行多个回调方法,可 ...

  2. 解决.VS2012+EF5.0开发的网站在window server2003上无法部署的问题

    (一)前  言                                                                    最近一个月使用VS2012(默认框架是.net f ...

  3. 你应该知道的25道Javascript面试题

    题目来自 25 Essential JavaScript Interview Questions.闲来无事,正好切一下. 一 What is a potential pitfall with usin ...

  4. 关于lazyload插件的一些笔记

    Lazy Load Plugin for jQuery 需要引入 jQuery,兼容各种 IE,适合 PC 端使用.详细 API 可以参考 http://www.appelsiini.net/proj ...

  5. JavaScript文件加载器LABjs API详解

    在<高性能JavaScript>一书中提到了LABjs这个用来加载JavaScript文件的类库,LABjs是Loading And Blocking JavaScript的缩写,顾名思义 ...

  6. Github优秀java项目集合(中文版) - 涉及java所有的知识体系

    Java资源大全中文版 我想很多程序员应该记得 GitHub 上有一个 Awesome - XXX 系列的资源整理.awesome-java 就是 akullpp 发起维护的 Java 资源列表,内容 ...

  7. 分享:计算机图形学期末作业!!利用WebGL的第三方库three.js写一个简单的网页版“我的世界小游戏”

    这几天一直在忙着期末考试,所以一直没有更新我的博客,今天刚把我的期末作业完成了,心情澎湃,所以晚上不管怎么样,我也要写一篇博客纪念一下我上课都没有听,还是通过强大的度娘完成了我的作业的经历.(当然作业 ...

  8. MATLAB读取和写入Excel文件

    1. 读取Excel文件 (a) 命令方式xlsread:  读取命令:[data,text]  = xlsread(FileName, SheetName, Range); data保存的是数据单元 ...

  9. 使用D3绘制图表(5)--水平柱状图表

    绘制水平柱状图表的方法也不是很难,首先在svg中插入g,然后在g中插入rect. 1.html代码 <!DOCTYPE html> <html> <head> &l ...

  10. mysql 备份恢复图

    http://blog.csdn.net/oldboy8/article/details/8294631