Bomb

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
Total Submission(s): 13181    Accepted Submission(s): 4725

Problem Description
The counter-terrorists found a time bomb in the dust. But this time the terrorists improve on the time bomb. The number sequence of the time bomb counts from 1 to N. If the current number sequence includes the sub-sequence "49", the power of the blast would add one point.
Now the counter-terrorist knows the number N. They want to know the final points of the power. Can you help them?
 
Input
The first line of input consists of an integer T (1 <= T <= 10000), indicating the number of test cases. For each test case, there will be an integer N (1 <= N <= 2^63-1) as the description.

The input terminates by end of file marker.

 
Output
For each test case, output an integer indicating the final points of the power.
 
Sample Input

3 1 50 500
 
Sample Output

0 1 15
 
求1~n中有多少个数中没有49连续子序列的。
思路:
比较简单的数位dp。dp[len][w][is4]表示第len位的时候,之前是否存在49,并且之前的数字是否为4.
dp[len][w][is4] = sum(dp[len-1][fw][fis4]);
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<string>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1000000001
#define MOD 1000000007
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define pi acos(-1.0)
using namespace std;
const int MAXN = ;
ll dp[MAXN][][];
int digit[MAXN];
char s[MAXN];
ll dfs(int len,int w,int ismax,int pa,int is4)
{
if(len == )return w ? : ;
if(!ismax && dp[len][w][is4])return dp[len][w][is4];
int maxv = ismax ? digit[len] : ;
ll ans = ;
for(int i = ; i <= maxv; i++){
if(pa == && i == ){
ans += dfs(len-,,ismax && i == maxv,i,i == );
}
else {
ans += dfs(len-,w,ismax && i == maxv,i,i == );
}
}
if(!ismax)dp[len][w][is4] = ans;
return ans;
}
void solve()
{
int slen = strlen(s);
int len = ;
for(int i = slen - ; i >= ; i--){
digit[++len] = s[i] - '';
}
memset(dp,,sizeof(dp));
printf("%lld\n",dfs(len,,,-,));
}
int main()
{
int t;
scanf("%d",&t);
while(t--){
scanf("%s",s);
solve();
}
return ;
}

Bomb

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
Total Submission(s): 13181    Accepted Submission(s): 4725

Problem Description
The counter-terrorists found a time bomb in the dust. But this time the terrorists improve on the time bomb. The number sequence of the time bomb counts from 1 to N. If the current number sequence includes the sub-sequence "49", the power of the blast would add one point.
Now the counter-terrorist knows the number N. They want to know the final points of the power. Can you help them?
 
Input
The first line of input consists of an integer T (1 <= T <= 10000), indicating the number of test cases. For each test case, there will be an integer N (1 <= N <= 2^63-1) as the description.

The input terminates by end of file marker.

 
Output
For each test case, output an integer indicating the final points of the power.
 
Sample Input

3 1 50 500
 
Sample Output

0 1 15
 
求1~n中有多少个数中没有49连续子序列的。
思路:
比较简单的数位dp。dp[len][w][is4]表示第len位的时候,之前是否存在49,并且之前的数字是否为4.
dp[len][w][is4] = sum(dp[len-1][fw][fis4]);

hdu3555 数位dp的更多相关文章

  1. hdu3555数位dp基础

    /* dp[i][0|1|2]:没有49的个数|最高位是9,没有49的个数|有49的个数 dp[i][0]=10*dp[i-1][0]-dp[i-1][1] dp[i][1]=dp[i-1][0] d ...

  2. hdu3555(数位DP dfs/递推)

    Bomb Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Total Submi ...

  3. 数位dp浅谈(hdu3555)

    数位dp简介: 数位dp常用于求区间内某些特殊(常关于数字各个数位上的值)数字(比如要求数字含62,49): 常用解法: 数位dp常用记忆化搜索或递推来实现: 由于记忆化搜索比较好写再加上博主比较蒟, ...

  4. hdu3555 Bomb (记忆化搜索 数位DP)

    http://acm.hdu.edu.cn/showproblem.php?pid=3555 Bomb Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  5. hdu---(3555)Bomb(数位dp(入门))

    Bomb Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Total Submi ...

  6. hdu3555 Bomb 数位DP入门

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3555 简单的数位DP入门题目 思路和hdu2089基本一样 直接贴代码了,代码里有详细的注释 代码: ...

  7. 【Hdu3555】 Bomb(数位DP)

    Description 题意就是找0到N有多少个数中含有49. \(1\leq N \leq2^{63}-1\) Solution 数位DP,与hdu3652类似 \(F[i][state]\)表示位 ...

  8. 【hdu3555】Bomb 数位dp

    题目描述 求 1~N 内包含数位串 “49” 的数的个数. 输入 The first line of input consists of an integer T (1 <= T <= 1 ...

  9. [Hdu3555] Bomb(数位DP)

    Description 题意就是找0到N有多少个数中含有49. \(1\leq N \leq2^{63}-1\) Solution 数位DP,与hdu3652类似 \(F[i][state]\)表示位 ...

随机推荐

  1. POJ2230Watchcow[欧拉回路]

    Watchcow Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 7512   Accepted: 3290   Specia ...

  2. AC日记——ISBN号码 openjudge 1.7 29

    29:ISBN号码 总时间限制:  1000ms 内存限制:  65536kB 描述 每一本正式出版的图书都有一个ISBN号码与之对应,ISBN码包括9位数字.1位识别码和3位分隔符,其规定格式如“x ...

  3. KSFramework:集成U3D热重载框架 - README

    KSFramework KEngine + SLua+ Framework = KSFramework KSFramework是一个整合KEngine.SLua的Unity 5开发框架,并为程序.美术 ...

  4. 开发Adobe AIR移动应用程序的考虑事项

    http://www.adobe.com/cn/devnet/air/articles/considerations-air-apps-mobile.html Adobe AIR 经过发展演进,已经超 ...

  5. S2结业考试的第一次测验

    错题分析: 1:java中的错误处理是通过异常处理模型来实现的,那么异常处理模块能处理的错误是: A:运行时错误 B:逻辑错误 C:语法错误 D:内部错误 正确答案是:A 解析:运行时异常都是Runt ...

  6. java 22 - 16 多线程之生产者和消费者的问题

    生产者和消费者问题的描述图 通过上图,我们可以发现: 生产者和消费者使用的都是同一个资源(肉包子) 所以,当使用线程的时候,这两类的锁也是同一把锁(为了避免出现线程安全问题) 例子:学生信息的录入和获 ...

  7. Eclipse自动打开实现类原型的工具

    http://eclipse-tools.sourceforge.net/implementors/ I always use this implementors plugin to find all ...

  8. 机器学习实战--logistic回归

    #encoding:utf-8 from numpy import * def loadDataSet(): #加载数据 dataMat = []; labelMat = [] fr = open(' ...

  9. webclient 比浏览器加载页面慢的一个问题

    测试中发现webclient 比浏览器加载页面慢的一个问题:原因WebClient 支持 gzip, deflate,但是未设置 解决方案: class WebClientEx : WebClient ...

  10. 怎样使用nat和桥接方式解决虚拟机联网问题

    对于很多的linux初学者来说,最开始学习linux时通常是在虚拟机上进行的,然而对于新手来说虚拟机联网会对他们来说是比较困难的.这里我根据自己的经验写了一篇文档分享给大家.下面对几种连接方式进行简单 ...