http://www.lydsy.com/JudgeOnline/problem.php?id=1406

题意:求$0<=x<n, 1<=n<=2,000,000,000, 且x^2 \equiv 1 \pmod{n}$的所有$x$

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
set<ll> s;
int main() {
ll n; scanf("%lld", &n);
for(int i=1; i*i<=n; ++i) if(n%i==0) {
ll a=i, b=n/i, x;
for(int k=0; b*k+1<n ; ++k) {
x=b*k+1; if((x+1)%a==0) s.insert(x);
}
for(int k=1; b*k-1<n; ++k) {
x=b*k-1; if((x-1)%a==0) s.insert(x);
}
}
for(set<ll>::iterator it=s.begin(); it!=s.end(); ++it)
printf("%lld\n", *it);
return 0;
}

  


好神的题= =

首先化简容易得到$(x+1)(x-1) = kn$,于是就翻题解了= =,神题不解释= =

于是得到$n | (x+1)(x-1)$

设$n=ab$,那么由 $ ab | (x+1)(x-1) \Rightarrow \left( a|(x+1) \land b|(x-1) \right) \lor \left( a|(x-1) \land b|(x+1) \right) $

我发现我无法证明其充分性怎么办QAQ

于是$O(\sqrt{n}ln \sqrt{n})$就能搞定啦= =

【BZOJ】1406: [AHOI2007]密码箱的更多相关文章

  1. BZOJ 1406: [AHOI2007]密码箱

    二次联通门 : BZOJ 1406: [AHOI2007]密码箱 /* BZOJ 1406: [AHOI2007]密码箱 数论 要求 x^2 ≡ 1 (mod n) 可以转换为 x ^ 2 - k * ...

  2. bzoj 1406: [AHOI2007]密码箱 二次剩餘

    1406: [AHOI2007]密码箱 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 701  Solved: 396[Submit][Status] D ...

  3. BZOJ 1406: [AHOI2007]密码箱( 数论 )

    (x+1)(x-1) mod N = 0, 枚举N的>N^0.5的约数当作x+1或者x-1... ------------------------------------------------ ...

  4. BZOJ 1406: [AHOI2007]密码箱 exgcd+唯一分解定理

    推出来了一个解法,但是感觉复杂度十分玄学,没想到秒过~ Code: #include <bits/stdc++.h> #define ll long long #define N 5000 ...

  5. 1406: [AHOI2007]密码箱

    1406: [AHOI2007]密码箱 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1591  Solved: 944[Submit][Status][ ...

  6. BZOJ_1406_[AHOI2007]密码箱_枚举+数学

    BZOJ_1406_[AHOI2007]密码箱_枚举+数学 Description 在一次偶然的情况下,小可可得到了一个密码箱,听说里面藏着一份古代流传下来的藏宝图,只要能破解密码就能打开箱子,而箱子 ...

  7. 洛谷——P4296 [AHOI2007]密码箱

    P4296 [AHOI2007]密码箱 密码x大于等于0,且小于n,而x的平方除以n,得到的余数为1. 求这个密码,$1<=n<=2,000,000,000$ 暴力枚举,数据有点儿水$O( ...

  8. 【BZOJ 1406】 [AHOI2007]密码箱

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] \(x^2%n=1\) \(x^2-1 = k*n\) \((x+1)*(x-1) % n == 0\) 设\(n=a*b\) 对于 ...

  9. BZOJ 1406 密码箱

    直接两层枚举就行了. 避免排序可以用set. #include<iostream> #include<cstdio> #include<cstring> #incl ...

随机推荐

  1. settimeout,cleartimeout的使用分析

    设置时间的定时轮回执行,大家想到的js也就是settimeout这个方法,这个方法确实能够实现定时反复执行的功能,clearttimeout这是清理或者是暂停轮回执行的情况.可是发现clearttim ...

  2. Memcached缓存在.Net 中的使用(memcacheddotnet)

    缓存对于提高大数据量的网站性能无疑不是一个很好的解决方案,针对缓存的使用网上同仁介绍很多,再次我仅仅分享一下自己对Memcached使用的简单介绍.Memchached的使用通过第三方DLL来完成,常 ...

  3. Bootstrap 表格 笔记

    Bootstrap 表格 Bootstrap 提供了一个清晰的创建表格的布局.下表列出了 Bootstrap 支持的一些表格元素: 标签 描述 <table> 为表格添加基础样式. < ...

  4. angularjs实战

    1.指令  transclude 保留原来的内容 replace 去掉<my-directive>指令 <script src="http://apps.bdimg.com ...

  5. mysql 查询优化规则

    .请不要在SELECT中使用DISTINCT: #会用到临时表 .尽可能不要SELECT *,而应该查询需要用到的指定几个字段: .不要对两个大表进行联合,无论是内联或外联.对于需要对两个或多个表进行 ...

  6. 您的 PHP 似乎没有安装运行 WordPress 所必需的 MySQL 扩展”处理方法

    转自:http://www.xuebuyuan.com/1549022.html 这已经是一个老掉牙的问题了,部分人使用自己的服务器安装WordPress程序之后,会出现“您的 PHP 似乎没有安装运 ...

  7. [Liferay6.2]Liferay Dynamic Query API示例

    介绍 Liferay提供了几种方法定义复杂的查询用来检索数据库中的数据. 通常情况下,在每个service Entity中,通过定义一些'finder'方法,可以便捷地满足基本的数据查询操作. 但是, ...

  8. C++读取文件夹中所有的文件或者是特定后缀的文件

    由于经常有读取一个文件夹中的很多随机编号的文件,很多时候需要读取某些特定格式的所有文件. 下面的代码可以读取指定文件家中的所有文件和文件夹中格式为jpg的文件 参考: http://www.2cto. ...

  9. Laravel系列 目录结构

    Where Is The Models Directory? app directory by default 其中 app:,core code of your application, almos ...

  10. unicode-range 字体混搭(转)

    最先想到的方法是定义两个拥有不同字体CSS类分别赋予不同的元素. <div class="font1"></div> <div class=" ...