Description

windy学会了一种游戏。对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应。最开始windy把数字按顺序1,2,3,……,N写一排在纸上。然后再在这一排下面写上它们对应的数字。然后又在新的一排下面写上它们对应的数字。如此反复,直到序列再次变为1,2,3,……,N。 如: 1 2 3 4 5 6 对应的关系为 1->2 2->3 3->1 4->5 5->4 6->6 windy的操作如下 1 2 3 4 5 6 2 3 1 5 4 6 3 1 2 4 5 6 1 2 3 5 4 6 2 3 1 4 5 6 3 1 2 5 4 6 1 2 3 4 5 6 这时,我们就有若干排1到N的排列,上例中有7排。现在windy想知道,对于所有可能的对应关系,有多少种可能的排数。

Input

包含一个整数,N。

Output

包含一个整数,可能的排数。

Sample Input

【输入样例一】
3
【输入样例二】
10

Sample Output

【输出样例一】
3
【输出样例二】
16

HINT

【数据规模和约定】

100%的数据,满足 1 <= N <= 1000 。

 
由置换的基本性质可得,所需行数为所有循环节长度的lcm。
考虑唯一分解定理:n=∏pi^ci,我们在ci上做文章。
设f[i][j]表示前i个质因子,用了j个元素构成循环节的方案数。
O(N^2)
#include<cstdio>
#include<cctype>
#include<queue>
#include<cstring>
#include<algorithm>
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ren for(int i=first[x];i;i=next[i])
using namespace std;
inline int read() {
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
typedef long long ll;
const int maxn=1010;
int vis[maxn],pri[maxn],cnt;
void gen(int n) {
rep(i,2,n) {
if(!vis[i]) pri[++cnt]=i;
rep(j,1,cnt) {
if(i*pri[j]>n) break;
vis[i*pri[j]]=1;
if(i%pri[j]==0) break;
}
}
}
int n;
ll f[maxn][maxn];
int main() {
gen(n=read());f[0][0]=1;
rep(i,1,cnt) rep(j,0,n) {
f[i][j]+=f[i-1][j];
for(int k=pri[i];k<=n-j;k*=pri[i]) f[i][j+k]+=f[i-1][j];
}
ll ans=0;
rep(i,0,n) ans+=f[cnt][i];
printf("%lld\n",ans);
return 0;
}

  

 

BZOJ1025: [SCOI2009]游戏的更多相关文章

  1. bzoj千题计划116:bzoj1025: [SCOI2009]游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目转化: 将n分为任意段,设每段的长度分别为x1,x2,…… 求lcm(xi)的个数 有一个 ...

  2. [BZOJ1025] [SCOI2009]游戏 解题报告

    Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...

  3. [bzoj1025][SCOI2009]游戏 (分组背包)

    Description windy学会了一种游戏.对于1到N这N个数字,都有唯一 且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们 ...

  4. BZOJ1025 [SCOI2009]游戏 【置换群 + 背包dp】

    题目链接 BZOJ1025 题解 题意就是问一个\(1....n\)的排列在同一个置换不断重复下回到\(1...n\)可能需要的次数的个数 和置换群也没太大关系 我们只需知道同一个置换不断重复,实际上 ...

  5. bzoj1025: [SCOI2009] 游戏 6

    DP. 每种排法的长度对应所有循环节长度的最小公倍数. 所以排法总数为和为n的几个数的最小公倍数的总数. #include<cstdio> #include<algorithm> ...

  6. 2018.09.02 bzoj1025: [SCOI2009]游戏(计数dp+线筛预处理)

    传送门 要将所有置换变成一个轮换,显然轮换的周期是所有置换长度的最小公倍数. 于是我们只需要求长度不超过n,且长度最小公倍数为t的不同置换数. 而我们知道,lcm只跟所有素数的最高位有关. 因此lcm ...

  7. bzoj1025(SCOI2009)游戏——唯一分解的思路与应用

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1025 可以认为对应的值之间连边,就连成了一个有一个或几个环的图.列数就是每个环里点数的lcm ...

  8. bzoj1025: [SCOI2009]游戏(DP)

    题目大意:将长度为n的排列作为1,2,3,...,n的置换,有可能置换x次之后,序列又回到了1,2,3,...,n,求所有可能的x的个数. 看见这种一脸懵逼的题第一要务当然是简化题意...我们可以发现 ...

  9. bzoj1025 [SCOI2009]游戏——因数DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1025 这篇博客写得真好呢:https://www.cnblogs.com/phile/p/4 ...

随机推荐

  1. iscroll 4.0 滚动(水平和垂直)

    1.概述 iscroll 专注于页面滚动js.Iscroll滚动做的挺好,特别是针对手机网页(android.iphone)正好弥补手动滑屏的遗缺,而今研究一番,把代码贴出来,供大家参考. 2.isc ...

  2. 知乎大牛的关于JS解答

    很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...

  3. oracle 11g r1 RAC增加新节点

    在一套两节点的rac上增加一个新的节点,详细的操作记录如下:   已有节点RAC1,RAC2 一,环境及版本: 公司环境:Vmware Esxi 5.5  操作系统:Redhat 5.8 x86_64 ...

  4. dbca:Exception in thread "main" java.lang.UnsatisfiedLinkError: get

    在64位的操作系统安装oracle10g 软件安装完成后,使用dbca建库的时候报下面的错: $ dbcaUnsatisfiedLinkError exception loading native l ...

  5. [LeetCode] Min Stack

    Design a stack that supports push, pop, top, and retrieving the minimum element in constant time. pu ...

  6. .net socket 层面实现代理服务器

    socket 层面实现代理服务器 首先是简一个简单的socket客户端和服务器端的例子 建立连接 Socket client = new Socket(AddressFamily.InterNetwo ...

  7. android 入门-基础了解

    strings.xml – 文字資源. colors.xml – 顏色資源. dimens.xml – 尺寸資源. arrays.xml – 陣列資源. styles.xml – 樣式資源. #RGB ...

  8. ASP.NET 5 Beta8发布及升级经验

    (此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:ASP.NET 5 Beta8如期发布,这是一个重要的里程碑,因为这是ASP.NET ...

  9. memcpy与memmove的区别

    在面试中经常会被问道memcpy与memove有什么区别? 整理如下: 其实主要在考C的关键字:restrict C库中有两个函数可以从一个位置把字节复制到另一个位置.在C99标准下,它们的原型如下: ...

  10. 在SharePoint2010中用out-of-box的方式自定制Application Pages(AccessDenied,Confirmation,Error,Login,RequestAccess,Signout,WebDeleted)

    在实际项目中需要对SharePoint2010中的AccessDenied页面进行自定制,于是乎上网搜索相关内容,经实际操作此方法可行,便以此文记录. 在SharePoint2010中,由于secur ...