hadoop的核心思想是MapReduce,但shuffle又是MapReduce的核心。shuffle的主要工作是从Map结束到Reduce开始之间的过程。首先看下这张图,就能了解shuffle所处的位置。图中的partitions、copy phase、sort phase所代表的就是shuffle的不同阶段。

  

  shuffle阶段又可以分为Map端的shuffle和Reduce端的shuffle。

  一、Map端的shuffle

  Map端会处理输入数据并产生中间结果,这个中间结果会写到本地磁盘,而不是HDFS。每个Map的输出会先写到内存缓冲区中,当写入的数据达到设定的阈值时,系统将会启动一个线程将缓冲区的数据写到磁盘,这个过程叫做spill。

  在spill写入之前,会先进行二次排序,首先根据数据所属的partition进行排序,然后每个partition中的数据再按key来排序。partition的目是将记录划分到不同的Reducer上去,以期望能够达到负载均衡,以后的Reducer就会根据partition来读取自己对应的数据。接着运行combiner(如果设置了的话),combiner的本质也是一个Reducer,其目的是对将要写入到磁盘上的文件先进行一次处理,这样,写入到磁盘的数据量就会减少。最后将数据写到本地磁盘产生spill文件(spill文件保存在{mapred.local.dir}指定的目录中,Map任务结束后就会被删除)。

  最后,每个Map任务可能产生多个spill文件,在每个Map任务完成前,会通过多路归并算法将这些spill文件归并成一个文件。至此,Map的shuffle过程就结束了。

  二、Reduce端的shuffle

  Reduce端的shuffle主要包括三个阶段,copy、sort(merge)和reduce。

  首先要将Map端产生的输出文件拷贝到Reduce端,但每个Reducer如何知道自己应该处理哪些数据呢?因为Map端进行partition的时候,实际上就相当于指定了每个Reducer要处理的数据(partition就对应了Reducer),所以Reducer在拷贝数据的时候只需拷贝与自己对应的partition中的数据即可。每个Reducer会处理一个或者多个partition,但需要先将自己对应的partition中的数据从每个Map的输出结果中拷贝过来。

  接下来就是sort阶段,也成为merge阶段,因为这个阶段的主要工作是执行了归并排序。从Map端拷贝到Reduce端的数据都是有序的,所以很适合归并排序。最终在Reduce端生成一个较大的文件作为Reduce的输入。

  最后就是Reduce过程了,在这个过程中产生了最终的输出结果,并将其写到HDFS上。

  现在来总结一下shuffle过程,我画了张图,希望能够帮助理解。

  本文基于hadoop1.2.1

  如有错误,还请指正

  参考文章:《Hadoop权威指南》 Tom White

  转载请注明出处:http://www.cnblogs.com/gwgyk/p/3997849.html 

hadoop运行原理之shuffle的更多相关文章

  1. Hadoop运行原理总结(详细)

    本编随笔是小编个人参照个人的笔记.官方文档以及网上的资料等后对HDFS的概念以及运行原理进行系统性地归纳,说起来真的惭愧呀,自学了很长一段时间也没有对Hadoop知识点进行归纳,有时候在实战中或者与别 ...

  2. hadoop运行原理之Job运行(三) TaskTracker的启动及初始化

    与JobTracker一样,TaskTracker也有main()方法,然后以线程的方式启动(继承了Runnable接口).main()方法中主要包含两步:一是创建一个TaskTracker对象:二是 ...

  3. hadoop运行原理之Job运行(五) 任务调度

    接着上篇来说.hadoop首先调度辅助型task(job-cleanup task.task-cleanup task和job-setup task),这是由JobTracker来完成的:但对于计算型 ...

  4. hadoop运行原理之Job运行(四) JobTracker端心跳机制分析

    接着上篇来说,TaskTracker端的transmitHeartBeat()方法通过RPC调用JobTracker端的heartbeat()方法来接收心跳并返回心跳应答.还是先看看这张图,对它的大概 ...

  5. hadoop运行原理之Job运行(二) Job提交及初始化

    本篇主要介绍Job从客户端提交到JobTracker及其被初始化的过程. 以WordCount为例,以前的程序都是通过JobClient.runJob()方法来提交Job,但是现在大多用Job.wai ...

  6. hadoop运行原理之Job运行(一) JobTracker启动及初始化

    这部分的计划是这样的,首先解释JobTracker的启动过程和作业从JobClient提交到JobTracker上:然后分析TaskTracker和heartbeat:最后将整个流程debug一遍来加 ...

  7. Hadoop(六)之HDFS的存储原理(运行原理)

    前言 其实说到HDFS的存储原理,无非就是读操作和写操作,那接下来我们详细的看一下HDFS是怎么实现读写操作的! 一.HDFS读取过程 1)客户端通过调用FileSystem对象的open()来读取希 ...

  8. Hadoop基础-Hdfs各个组件的运行原理介绍

    Hadoop基础-Hdfs各个组件的运行原理介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.NameNode工作原理(默认端口号:50070) 1>.什么是NameN ...

  9. 【转载】Spark系列之运行原理和架构

    参考 http://www.cnblogs.com/shishanyuan/p/4721326.html 1. Spark运行架构 1.1 术语定义 lApplication:Spark Applic ...

随机推荐

  1. 2.在程序中如何实现Cookie信息的设置,读取和删除

    设置:你可以在IE的“工具/Internet选项”的“常规”选项卡中,选择“设置/查看文件”,查看所有保存到你电脑里的Cookies.这些文件通常是以user@domain格式命名的,user是你的本 ...

  2. 接口测试之HttpClient

    HttpClient使用详解   Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客 ...

  3. ASP.net解析JSON例子

    using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.We ...

  4. sql注入过滤的公共方法

    /// <summary> ///SQL注入过滤 /// </summary> /// <param name="InText">要过滤的字符串 ...

  5. Android handle 多线程练习

    Android handle <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android&quo ...

  6. 复习练习(03)jquery Css方法一步步升级

    jquery Css方法一步步升级 <script src="jquery-1.8.3.js"></script> <script type=&quo ...

  7. 从零开始学iPhone开发(1)——工具的使用

    前提:已经具备了苹果电脑或者iMac,或者安装好了x86苹果而且已经联网. 苹果系统版本要求是:Max OS X Lion,或者 Mountain Lion 我们对iPhone进行使用的工具是XCod ...

  8. MAC地址泛洪攻击测试

    测试环境:kali系统(2个kali分别作攻击人和目标用户) win7系统(主机) 1.步配置FTP设置用户名密码 2.在攻击kali端测试网络的连通性 3.测试tpf是否正常 开始泛洪 4.开始抓包 ...

  9. CSS3的chapter6

    CSS布局          div标签: 在css布局方式中,div 是这种布局方式的核心对象,我们的页面排版不再依赖于表格, 仅从div的使用上说,做一个简单的布局只需要两样东西:div 与 cs ...

  10. Hibernate中两种删除用户的方式

    第一种,是比较传统的,先根据主键列进行查询到用户,在进行删除用户 //删除数据 public void deleteStudent(String sno) { init() ; Student qu ...