POJ 3683 Priest John's Busiest Day(2-SAT 并输出解)
Description
John is the only priest in his town. September 1st is the John's busiest day in a year because there is an old legend in the town that the couple who get married on that day will be forever blessed by the God of Love. This year N couples plan to get married on the blessed day. The i-th couple plan to hold their wedding from time Si to time Ti. According to the traditions in the town, there must be a special ceremony on which the couple stand before the priest and accept blessings. The i-th couple need Di minutes to finish this ceremony. Moreover, this ceremony must be either at the beginning or the ending of the wedding (i.e. it must be either from Si to Si + Di, or from Ti - Di to Ti). Could you tell John how to arrange his schedule so that he can present at every special ceremonies of the weddings.
Note that John can not be present at two weddings simultaneously.
Input
The first line contains a integer N ( 1 ≤ N ≤ 1000).
The next N lines contain the Si, Ti and Di. Si and Ti are in the format of hh:mm.
Output
The first line of output contains "YES" or "NO" indicating whether John can be present at every special ceremony. If it is "YES", output another N lines describing the staring time and finishing time of all the ceremonies.
题目大意:给n个婚礼,每个婚礼要举办一次祝福,这个祝福只能在婚礼的开始或结束的时候举办(大大的2SAT标志),问能否举办所有祝福,并输出祝福的时间段(任意解)。
思路:可以参考国家集训队2003年伍昱的论文,判冲连边就成。
PS:这题各种不严谨,没说Ti - Si ≥ Di,没保证不会超过24小时,反正都忽视掉是可以AC的,不忽视能不能AC我就不知道了……
#include <cstdio>
#include <cstring> const int MAXN = *;
const int MAXM = MAXN * MAXN * ; struct Topological{
int St[MAXN], c;
int n, ecnt, cnt;
int head[MAXN], order[MAXN], indeg[MAXN];
int next[MAXM], to[MAXM]; void addEdge(int x, int y){
to[ecnt] = y; next[ecnt] = head[x]; head[x] = ecnt++;
++indeg[y];
//printf("%d->%d\n",x,y);
} void init(int nn){
n = nn; ecnt = ;
memset(head, , sizeof(head));
memset(indeg,,sizeof(indeg));
} void build(){
c = cnt = ;
for(int i = ; i <= n; ++i)
if(indeg[i] == ) St[++c] = i;
while(c > ){
int u = St[c--]; order[cnt++] = u;
for(int p = head[u]; p; p = next[p]){
int &v = to[p];
--indeg[v];
if(indeg[v] == ) St[++c] = v;
}
}
}
} T; struct TwoSAT{
int St[MAXN], c;
int n, ecnt, dfs_clock, scc_cnt;
int head[MAXN], sccno[MAXN], pre[MAXN], lowlink[MAXN];
int next[MAXM], to[MAXM];
int select[MAXN], sccnox[MAXN]; void dfs(int u){
lowlink[u] = pre[u] = ++dfs_clock;
St[++c] = u;
for(int p = head[u]; p; p = next[p]){
int &v = to[p];
if(!pre[v]){
dfs(v);
if(lowlink[u] > lowlink[v]) lowlink[u] = lowlink[v];
}else if(!sccno[v]){
if(lowlink[u] > pre[v]) lowlink[u] = pre[v];
}
}
if(lowlink[u] == pre[u]){
sccnox[++scc_cnt] = u;
while(true){
int x = St[c--];
sccno[x] = scc_cnt;
if(x == u) break;
}
}
} void init(int nn){
n = nn;
ecnt = ; dfs_clock = scc_cnt = ;
memset(head,,sizeof(head));
memset(pre,,sizeof(pre));
memset(sccno,,sizeof(sccno));
} void addEdge(int x, int y){//x, y clash
to[ecnt] = y^; next[ecnt] = head[x]; head[x] = ecnt++;
to[ecnt] = x^; next[ecnt] = head[y]; head[y] = ecnt++;
//printf("%d<>%d\n",x,y);
} bool solve(){
for(int i = ; i < n; ++i)
if(!pre[i]) dfs(i);
for(int i = ; i < n; i += )
if(sccno[i] == sccno[i^]) return false;
return true;
} void bulid_select(){
T.init(scc_cnt);
for(int u = ; u < n; ++u){
for(int p = head[u]; p; p = next[p]){
int &v = to[p];
if(sccno[u] == sccno[v]) continue;
T.addEdge(sccno[u], sccno[v]);
}
}
T.build();
memset(select,,sizeof(select));
for(int i = T.n - ; i > ; --i) {
int &x = T.order[i];
if(select[x] == -){
select[x] = ;
select[sccno[sccnox[x]^]] = ;
}
}
}
} G; const int MAXNN = ; int a1[MAXNN], b1[MAXNN], a2[MAXNN], b2[MAXNN], a3[MAXNN], b3[MAXNN], c[MAXNN]; inline bool clash(int beg1, int end1, int beg2, int end2){
if(end1 <= beg2 || end2 <= beg1) return false;
return true;
} int main(){
int n;
while(scanf("%d", &n)!=EOF){
G.init(n*);
for(int i = ; i < n; ++i) {
scanf("%d:%d %d:%d %d", &a1[i], &a2[i], &b1[i], &b2[i], &c[i]);
a3[i] = a1[i] * + a2[i];
b3[i] = b1[i] * + b2[i];
}
for(int i = ; i < n; ++i) for(int j = i+; j < n; ++j) if(i != j){
if(clash(a3[i], a3[i] + c[i], a3[j], a3[j] + c[j])) G.addEdge(i*, j*);
if(clash(a3[i], a3[i] + c[i], b3[j] - c[j], b3[j])) G.addEdge(i*, j*+);
if(clash(b3[i] - c[i], b3[i], a3[j], a3[j] + c[j])) G.addEdge(i*+, j*);
if(clash(b3[i] - c[i], b3[i], b3[j] - c[j], b3[j])) G.addEdge(i*+, j*+);
}
if(G.solve()) printf("YES\n");
else {printf("NO\n"); continue;}
G.bulid_select();
for(int i = ; i < n; ++i){
//printf("%d %d\n",i*2,G.sccno[i*2]);
if(G.select[G.sccno[i*]]){
b1[i] = a1[i]; b2[i] = a2[i] + c[i];
while(b2[i] >= ) ++b1[i], b2[i] -= ;
} else {
a1[i] = b1[i]; a2[i] = b2[i] - c[i];
while(a2[i] < ) --a1[i], a2[i] += ;
}
printf("%02d:%02d %02d:%02d\n", a1[i], a2[i], b1[i], b2[i]);
}
}
return ;
}
141MS
后记:
上面那个输出解的方法略显麻烦了,看到了一个新的方法,就是若sccno[2i]<sccno[2i+1]就选i,否则选i的对立面,不用求拓扑排序了。省了一大堆代码量。
证明:
对于任意点a、b(设~a、~b分别为他们的对立面),rank为他们的拓扑序号
那么我们选择a当且仅当rank[a]>rank[~a],选择b当且仅当rank[b]>rank[~b]
假设a和b有矛盾,那么有a到~b有路径(由对称性b到~a有路径),则rank[~b]>rank[a](rank[~a]>rank[b])
联合上式,有rank[a]>rank[~a]>rank[b]>rank[~b]>rank[a]矛盾
假设不成立,a和b没有矛盾
所以对于任意点a,选择a当且仅当rank[a]>rank[~a]是合法的
当我们用tarjan求强联通分量的时候,实际上求出来的scnno[]的值便是一个逆序的拓扑排序值。
仔细想想这没什么问题,因为再tarjan求强联通分量的时候,对于任意点x,它的后继顶点一定会比x先编入强联通分量,那么x的后继一定要比x的scnno值要小。
代码(125MS):
#include <cstdio>
#include <cstring> const int MAXN = *;
const int MAXM = MAXN * MAXN * ; struct TwoSAT{
int St[MAXN], c;
int n, ecnt, dfs_clock, scc_cnt;
int head[MAXN], sccno[MAXN], pre[MAXN], lowlink[MAXN];
int next[MAXM], to[MAXM]; void dfs(int u){
lowlink[u] = pre[u] = ++dfs_clock;
St[++c] = u;
for(int p = head[u]; p; p = next[p]){
int &v = to[p];
if(!pre[v]){
dfs(v);
if(lowlink[u] > lowlink[v]) lowlink[u] = lowlink[v];
}else if(!sccno[v]){
if(lowlink[u] > pre[v]) lowlink[u] = pre[v];
}
}
if(lowlink[u] == pre[u]){
++scc_cnt;
while(true){
int x = St[c--];
sccno[x] = scc_cnt;
if(x == u) break;
}
}
} void init(int nn){
n = nn;
ecnt = ; dfs_clock = scc_cnt = ;
memset(head,,sizeof(head));
memset(pre,,sizeof(pre));
memset(sccno,,sizeof(sccno));
} void addEdge(int x, int y){//x, y clash
to[ecnt] = y^; next[ecnt] = head[x]; head[x] = ecnt++;
to[ecnt] = x^; next[ecnt] = head[y]; head[y] = ecnt++;
//printf("%d<>%d\n",x,y);
} bool solve(){
for(int i = ; i < n; ++i)
if(!pre[i]) dfs(i);
for(int i = ; i < n; i += )
if(sccno[i] == sccno[i^]) return false;
return true;
}
} G; const int MAXNN = ; int a1[MAXNN], b1[MAXNN], a2[MAXNN], b2[MAXNN], a3[MAXNN], b3[MAXNN], c[MAXNN]; inline bool clash(int beg1, int end1, int beg2, int end2){
if(end1 <= beg2 || end2 <= beg1) return false;
return true;
} int main(){
int n;
while(scanf("%d", &n)!=EOF){
G.init(n*);
for(int i = ; i < n; ++i) {
scanf("%d:%d %d:%d %d", &a1[i], &a2[i], &b1[i], &b2[i], &c[i]);
a3[i] = a1[i] * + a2[i];
b3[i] = b1[i] * + b2[i];
}
for(int i = ; i < n; ++i) for(int j = i+; j < n; ++j) if(i != j){
if(clash(a3[i], a3[i] + c[i], a3[j], a3[j] + c[j])) G.addEdge(i*, j*);
if(clash(a3[i], a3[i] + c[i], b3[j] - c[j], b3[j])) G.addEdge(i*, j*+);
if(clash(b3[i] - c[i], b3[i], a3[j], a3[j] + c[j])) G.addEdge(i*+, j*);
if(clash(b3[i] - c[i], b3[i], b3[j] - c[j], b3[j])) G.addEdge(i*+, j*+);
}
if(G.solve()) printf("YES\n");
else {printf("NO\n"); continue;}
for(int i = ; i < n; ++i){
if(G.sccno[i * ] < G.sccno[i * + ]) {
b1[i] = a1[i]; b2[i] = a2[i] + c[i];
while(b2[i] >= ) ++b1[i], b2[i] -= ;
} else {
a1[i] = b1[i]; a2[i] = b2[i] - c[i];
while(a2[i] < ) --a1[i], a2[i] += ;
}
printf("%02d:%02d %02d:%02d\n", a1[i], a2[i], b1[i], b2[i]);
}
}
return ;
}
POJ 3683 Priest John's Busiest Day(2-SAT 并输出解)的更多相关文章
- POJ 3683 Priest John's Busiest Day(2-SAT+方案输出)
Priest John's Busiest Day Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10010 Accep ...
- POJ 3683 Priest John's Busiest Day / OpenJ_Bailian 3788 Priest John's Busiest Day(2-sat问题)
POJ 3683 Priest John's Busiest Day / OpenJ_Bailian 3788 Priest John's Busiest Day(2-sat问题) Descripti ...
- POJ 3683 Priest John's Busiest Day (2-SAT)
Priest John's Busiest Day Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6900 Accept ...
- poj - 3683 - Priest John's Busiest Day(2-SAT)
题意:有N场婚礼,每场婚礼的开始时间为Si,结束时间为Ti,每场婚礼有个仪式,历时Di,这个仪式要么在Si时刻开始,要么在Ti-Di时刻开始,问能否安排每场婚礼举行仪式的时间,使主持人John能参加所 ...
- POJ 3683 Priest John's Busiest Day (2-SAT)
题意:有n对新人要在同一天结婚.结婚时间为Ti到Di,这里有时长为Si的一个仪式需要神父出席.神父可以在Ti-(Ti+Si)这段时间出席也可以在(Di-Si)-Si这段时间.问神父能否出席所有仪式,如 ...
- POJ 3683 Priest John's Busiest Day (2-SAT,常规)
题意: 一些人要在同一天进行婚礼,但是牧师只有1个,每一对夫妻都有一个时间范围[s , e]可供牧师选择,且起码要m分钟才主持完毕,但是要么就在 s 就开始,要么就主持到刚好 e 结束.因为人数太多了 ...
- POJ 3683 Priest John's Busiest Day
2-SAT简单题,判断一下两个开区间是否相交 #include<cstdio> #include<cstring> #include<cmath> #include ...
- POJ 3683 Priest John's Busiest Day[2-SAT 构造解]
题意: $n$对$couple$举行仪式,有两个时间段可以选择,问是否可以不冲突举行完,并求方案 两个时间段选择对应一真一假,对于有时间段冲突冲突的两人按照$2-SAT$的规则连边(把不冲突的时间段连 ...
- POJ 3683 Priest John's Busiest Day 【2-Sat】
这是一道裸的2-Sat,只要考虑矛盾条件的判断就好了. 矛盾判断: 对于婚礼现场 x 和 y,x 的第一段可以和 y 的第一段或者第二段矛盾,同理,x 的第二段可以和 y 的第一段或者第二段矛盾,条件 ...
随机推荐
- BZOJ4503: 两个串
Description 兔子们在玩两个串的游戏.给定两个字符串S和T,兔子们想知道T在S中出现了几次, 分别在哪些位置出现.注意T中可能有“?”字符,这个字符可以匹配任何字符. Input 两行两个字 ...
- 硬盘分区工具gparted使用
一.介绍 GParted是一款linux下的功能非常强大的分区工具,和windows下的‘分区魔术师’类似,操作和显示上也很相似.GParted可以方便的创建.删除分区,也可以调整分区的大小和移动分区 ...
- Linux 下安装mysql 链接库
1.mysql 客户端 开发 链接库 1.1)CentOS yum install mysql-devel
- linux下的crontab服务
linux下的crontab服务:1.crontab 是用来让使用者在固定时间或固定间隔执行程序之用在linux平台上如果需要实现任务调度功能可以编写cron脚本来实现.以某一频率执行任务linux缺 ...
- winform记事本初步实现
public Form1() { InitializeComponent(); } private void 剪切TToolStripMenuItem_Click(object sender, Eve ...
- PL/SQL 导出dmp文件时发现表少了
(1)查看日志,是否有如下提示信息: EXP-: no storage definition found , ) 解决方法: http://www.it165.net/database/html/20 ...
- C# 安装和卸载 Windows Service
特别注意: 安装Window Service 的时候,一定要用管理员打开命令提示符(cmd) 1. 创建Windows Service 服务项目 2. Service设计界面:右键-->选择安装 ...
- Hibernate saveOrUpdate方法到底是怎么执行的?
saveOrUpdate方法,如果传入的对象有主键就执行更新,没有就执行新增.这句话误导了很多人. 究竟是执行新增还是更新,是要有上下文环境的.这个环境就是主键策略的选择. 主键生成方式为 手动设置: ...
- Python 基础 - 统计文本里单词的个数以及出现的次数
# -*- coding:utf-8 -*- #author:V def tol (file1,gui): #写一个方法,定义文件,or 匹配规则 import re patt = re.compil ...
- BizTalk开发系列(十一) 在Orchestration中执行Pipeline
由于开发需要有时要在流程中执行Pipeline.比如从DB的某个字段中取消息的字符串并在流程中构造消息.该需要通过pipeline进行升级 属性字段,验证消息等处理.BizTalk架构已经开放了此接口 ...