Description

John is the only priest in his town. September 1st is the John's busiest day in a year because there is an old legend in the town that the couple who get married on that day will be forever blessed by the God of Love. This year N couples plan to get married on the blessed day. The i-th couple plan to hold their wedding from time Si to time Ti. According to the traditions in the town, there must be a special ceremony on which the couple stand before the priest and accept blessings. The i-th couple need Di minutes to finish this ceremony. Moreover, this ceremony must be either at the beginning or the ending of the wedding (i.e. it must be either from Si to Si + Di, or from Ti - Di to Ti). Could you tell John how to arrange his schedule so that he can present at every special ceremonies of the weddings.

Note that John can not be present at two weddings simultaneously.

Input

The first line contains a integer N ( 1 ≤ N ≤ 1000). 
The next N lines contain the SiTi and DiSi and Ti are in the format of hh:mm.

Output

The first line of output contains "YES" or "NO" indicating whether John can be present at every special ceremony. If it is "YES", output another N lines describing the staring time and finishing time of all the ceremonies.

题目大意:给n个婚礼,每个婚礼要举办一次祝福,这个祝福只能在婚礼的开始或结束的时候举办(大大的2SAT标志),问能否举办所有祝福,并输出祝福的时间段(任意解)。

思路:可以参考国家集训队2003年伍昱的论文,判冲连边就成。

PS:这题各种不严谨,没说Ti - Si ≥ Di,没保证不会超过24小时,反正都忽视掉是可以AC的,不忽视能不能AC我就不知道了……

 #include <cstdio>
#include <cstring> const int MAXN = *;
const int MAXM = MAXN * MAXN * ; struct Topological{
int St[MAXN], c;
int n, ecnt, cnt;
int head[MAXN], order[MAXN], indeg[MAXN];
int next[MAXM], to[MAXM]; void addEdge(int x, int y){
to[ecnt] = y; next[ecnt] = head[x]; head[x] = ecnt++;
++indeg[y];
//printf("%d->%d\n",x,y);
} void init(int nn){
n = nn; ecnt = ;
memset(head, , sizeof(head));
memset(indeg,,sizeof(indeg));
} void build(){
c = cnt = ;
for(int i = ; i <= n; ++i)
if(indeg[i] == ) St[++c] = i;
while(c > ){
int u = St[c--]; order[cnt++] = u;
for(int p = head[u]; p; p = next[p]){
int &v = to[p];
--indeg[v];
if(indeg[v] == ) St[++c] = v;
}
}
}
} T; struct TwoSAT{
int St[MAXN], c;
int n, ecnt, dfs_clock, scc_cnt;
int head[MAXN], sccno[MAXN], pre[MAXN], lowlink[MAXN];
int next[MAXM], to[MAXM];
int select[MAXN], sccnox[MAXN]; void dfs(int u){
lowlink[u] = pre[u] = ++dfs_clock;
St[++c] = u;
for(int p = head[u]; p; p = next[p]){
int &v = to[p];
if(!pre[v]){
dfs(v);
if(lowlink[u] > lowlink[v]) lowlink[u] = lowlink[v];
}else if(!sccno[v]){
if(lowlink[u] > pre[v]) lowlink[u] = pre[v];
}
}
if(lowlink[u] == pre[u]){
sccnox[++scc_cnt] = u;
while(true){
int x = St[c--];
sccno[x] = scc_cnt;
if(x == u) break;
}
}
} void init(int nn){
n = nn;
ecnt = ; dfs_clock = scc_cnt = ;
memset(head,,sizeof(head));
memset(pre,,sizeof(pre));
memset(sccno,,sizeof(sccno));
} void addEdge(int x, int y){//x, y clash
to[ecnt] = y^; next[ecnt] = head[x]; head[x] = ecnt++;
to[ecnt] = x^; next[ecnt] = head[y]; head[y] = ecnt++;
//printf("%d<>%d\n",x,y);
} bool solve(){
for(int i = ; i < n; ++i)
if(!pre[i]) dfs(i);
for(int i = ; i < n; i += )
if(sccno[i] == sccno[i^]) return false;
return true;
} void bulid_select(){
T.init(scc_cnt);
for(int u = ; u < n; ++u){
for(int p = head[u]; p; p = next[p]){
int &v = to[p];
if(sccno[u] == sccno[v]) continue;
T.addEdge(sccno[u], sccno[v]);
}
}
T.build();
memset(select,,sizeof(select));
for(int i = T.n - ; i > ; --i) {
int &x = T.order[i];
if(select[x] == -){
select[x] = ;
select[sccno[sccnox[x]^]] = ;
}
}
}
} G; const int MAXNN = ; int a1[MAXNN], b1[MAXNN], a2[MAXNN], b2[MAXNN], a3[MAXNN], b3[MAXNN], c[MAXNN]; inline bool clash(int beg1, int end1, int beg2, int end2){
if(end1 <= beg2 || end2 <= beg1) return false;
return true;
} int main(){
int n;
while(scanf("%d", &n)!=EOF){
G.init(n*);
for(int i = ; i < n; ++i) {
scanf("%d:%d %d:%d %d", &a1[i], &a2[i], &b1[i], &b2[i], &c[i]);
a3[i] = a1[i] * + a2[i];
b3[i] = b1[i] * + b2[i];
}
for(int i = ; i < n; ++i) for(int j = i+; j < n; ++j) if(i != j){
if(clash(a3[i], a3[i] + c[i], a3[j], a3[j] + c[j])) G.addEdge(i*, j*);
if(clash(a3[i], a3[i] + c[i], b3[j] - c[j], b3[j])) G.addEdge(i*, j*+);
if(clash(b3[i] - c[i], b3[i], a3[j], a3[j] + c[j])) G.addEdge(i*+, j*);
if(clash(b3[i] - c[i], b3[i], b3[j] - c[j], b3[j])) G.addEdge(i*+, j*+);
}
if(G.solve()) printf("YES\n");
else {printf("NO\n"); continue;}
G.bulid_select();
for(int i = ; i < n; ++i){
//printf("%d %d\n",i*2,G.sccno[i*2]);
if(G.select[G.sccno[i*]]){
b1[i] = a1[i]; b2[i] = a2[i] + c[i];
while(b2[i] >= ) ++b1[i], b2[i] -= ;
} else {
a1[i] = b1[i]; a2[i] = b2[i] - c[i];
while(a2[i] < ) --a1[i], a2[i] += ;
}
printf("%02d:%02d %02d:%02d\n", a1[i], a2[i], b1[i], b2[i]);
}
}
return ;
}

141MS

后记:

上面那个输出解的方法略显麻烦了,看到了一个新的方法,就是若sccno[2i]<sccno[2i+1]就选i,否则选i的对立面,不用求拓扑排序了。省了一大堆代码量。

证明:

对于任意点a、b(设~a、~b分别为他们的对立面),rank为他们的拓扑序号
那么我们选择a当且仅当rank[a]>rank[~a],选择b当且仅当rank[b]>rank[~b]
假设a和b有矛盾,那么有a到~b有路径(由对称性b到~a有路径),则rank[~b]>rank[a](rank[~a]>rank[b])
联合上式,有rank[a]>rank[~a]>rank[b]>rank[~b]>rank[a]矛盾
假设不成立,a和b没有矛盾
所以对于任意点a,选择a当且仅当rank[a]>rank[~a]是合法的

当我们用tarjan求强联通分量的时候,实际上求出来的scnno[]的值便是一个逆序的拓扑排序值。
仔细想想这没什么问题,因为再tarjan求强联通分量的时候,对于任意点x,它的后继顶点一定会比x先编入强联通分量,那么x的后继一定要比x的scnno值要小。

代码(125MS):

 #include <cstdio>
#include <cstring> const int MAXN = *;
const int MAXM = MAXN * MAXN * ; struct TwoSAT{
int St[MAXN], c;
int n, ecnt, dfs_clock, scc_cnt;
int head[MAXN], sccno[MAXN], pre[MAXN], lowlink[MAXN];
int next[MAXM], to[MAXM]; void dfs(int u){
lowlink[u] = pre[u] = ++dfs_clock;
St[++c] = u;
for(int p = head[u]; p; p = next[p]){
int &v = to[p];
if(!pre[v]){
dfs(v);
if(lowlink[u] > lowlink[v]) lowlink[u] = lowlink[v];
}else if(!sccno[v]){
if(lowlink[u] > pre[v]) lowlink[u] = pre[v];
}
}
if(lowlink[u] == pre[u]){
++scc_cnt;
while(true){
int x = St[c--];
sccno[x] = scc_cnt;
if(x == u) break;
}
}
} void init(int nn){
n = nn;
ecnt = ; dfs_clock = scc_cnt = ;
memset(head,,sizeof(head));
memset(pre,,sizeof(pre));
memset(sccno,,sizeof(sccno));
} void addEdge(int x, int y){//x, y clash
to[ecnt] = y^; next[ecnt] = head[x]; head[x] = ecnt++;
to[ecnt] = x^; next[ecnt] = head[y]; head[y] = ecnt++;
//printf("%d<>%d\n",x,y);
} bool solve(){
for(int i = ; i < n; ++i)
if(!pre[i]) dfs(i);
for(int i = ; i < n; i += )
if(sccno[i] == sccno[i^]) return false;
return true;
}
} G; const int MAXNN = ; int a1[MAXNN], b1[MAXNN], a2[MAXNN], b2[MAXNN], a3[MAXNN], b3[MAXNN], c[MAXNN]; inline bool clash(int beg1, int end1, int beg2, int end2){
if(end1 <= beg2 || end2 <= beg1) return false;
return true;
} int main(){
int n;
while(scanf("%d", &n)!=EOF){
G.init(n*);
for(int i = ; i < n; ++i) {
scanf("%d:%d %d:%d %d", &a1[i], &a2[i], &b1[i], &b2[i], &c[i]);
a3[i] = a1[i] * + a2[i];
b3[i] = b1[i] * + b2[i];
}
for(int i = ; i < n; ++i) for(int j = i+; j < n; ++j) if(i != j){
if(clash(a3[i], a3[i] + c[i], a3[j], a3[j] + c[j])) G.addEdge(i*, j*);
if(clash(a3[i], a3[i] + c[i], b3[j] - c[j], b3[j])) G.addEdge(i*, j*+);
if(clash(b3[i] - c[i], b3[i], a3[j], a3[j] + c[j])) G.addEdge(i*+, j*);
if(clash(b3[i] - c[i], b3[i], b3[j] - c[j], b3[j])) G.addEdge(i*+, j*+);
}
if(G.solve()) printf("YES\n");
else {printf("NO\n"); continue;}
for(int i = ; i < n; ++i){
if(G.sccno[i * ] < G.sccno[i * + ]) {
b1[i] = a1[i]; b2[i] = a2[i] + c[i];
while(b2[i] >= ) ++b1[i], b2[i] -= ;
} else {
a1[i] = b1[i]; a2[i] = b2[i] - c[i];
while(a2[i] < ) --a1[i], a2[i] += ;
}
printf("%02d:%02d %02d:%02d\n", a1[i], a2[i], b1[i], b2[i]);
}
}
return ;
}

POJ 3683 Priest John's Busiest Day(2-SAT 并输出解)的更多相关文章

  1. POJ 3683 Priest John's Busiest Day(2-SAT+方案输出)

    Priest John's Busiest Day Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10010   Accep ...

  2. POJ 3683 Priest John's Busiest Day / OpenJ_Bailian 3788 Priest John's Busiest Day(2-sat问题)

    POJ 3683 Priest John's Busiest Day / OpenJ_Bailian 3788 Priest John's Busiest Day(2-sat问题) Descripti ...

  3. POJ 3683 Priest John's Busiest Day (2-SAT)

    Priest John's Busiest Day Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6900   Accept ...

  4. poj - 3683 - Priest John's Busiest Day(2-SAT)

    题意:有N场婚礼,每场婚礼的开始时间为Si,结束时间为Ti,每场婚礼有个仪式,历时Di,这个仪式要么在Si时刻开始,要么在Ti-Di时刻开始,问能否安排每场婚礼举行仪式的时间,使主持人John能参加所 ...

  5. POJ 3683 Priest John's Busiest Day (2-SAT)

    题意:有n对新人要在同一天结婚.结婚时间为Ti到Di,这里有时长为Si的一个仪式需要神父出席.神父可以在Ti-(Ti+Si)这段时间出席也可以在(Di-Si)-Si这段时间.问神父能否出席所有仪式,如 ...

  6. POJ 3683 Priest John's Busiest Day (2-SAT,常规)

    题意: 一些人要在同一天进行婚礼,但是牧师只有1个,每一对夫妻都有一个时间范围[s , e]可供牧师选择,且起码要m分钟才主持完毕,但是要么就在 s 就开始,要么就主持到刚好 e 结束.因为人数太多了 ...

  7. POJ 3683 Priest John's Busiest Day

    2-SAT简单题,判断一下两个开区间是否相交 #include<cstdio> #include<cstring> #include<cmath> #include ...

  8. POJ 3683 Priest John's Busiest Day[2-SAT 构造解]

    题意: $n$对$couple$举行仪式,有两个时间段可以选择,问是否可以不冲突举行完,并求方案 两个时间段选择对应一真一假,对于有时间段冲突冲突的两人按照$2-SAT$的规则连边(把不冲突的时间段连 ...

  9. POJ 3683 Priest John's Busiest Day 【2-Sat】

    这是一道裸的2-Sat,只要考虑矛盾条件的判断就好了. 矛盾判断: 对于婚礼现场 x 和 y,x 的第一段可以和 y 的第一段或者第二段矛盾,同理,x 的第二段可以和 y 的第一段或者第二段矛盾,条件 ...

随机推荐

  1. 总结新系统部署时,Oracle的一些注意事项:

    1.Oracle安装时,要选择字符集为中文编码,数据库重要角色设置密码时,不要用数字开头,不然后面会报一些错误提示 2.emp导出的数据dmp格式,导入时要在服务器导入,具体没有试,要找机会试试,转化 ...

  2. java 深入浅出工厂模式

    一.引子 话说十年前,有一个暴发户,他家有三辆汽车——Benz奔驰.Bmw宝马.Audi奥迪,还雇了司机为他开车.不过,暴发户坐车时总是怪怪的:上Benz车后跟司机说“开奔驰车!”,坐上Bmw后他说“ ...

  3. css设置移动端checkbox和radio样式

    复选框Checkbox是Web应用常用控件,随处可见,原生的复选框控件一般就像下面这样: 这取决于操作系统和浏览器,有些时候,这种样子并不能满足设计要求,这时需要更为精致的复选框样式.以往只有少数浏览 ...

  4. 记录load data infile 的用法

    load data local infile 'd:/1.txt' into table tcm.wm_dis_category fields terminated by';' lines termi ...

  5. vsphere平台windows虚拟机克隆的小插曲

    问题: 1.克隆完windows虚拟化后输入法乱码. 2.开启远程的情况下远程登录输入正确的密码也无法登录. 解决: 1.更改管理员用户密码(不输入原win7密码更改win7密码). 2.重新启用管理 ...

  6. crontab的坑

    1. 命令  全路径 (eg:which mysql) 2.执行脚本  (脚本中加上#!/bin/bash) eg: /bin/bash script.sh 3. 输出信息(>>) 使用全 ...

  7. Oracle加密表空间进行数据加密的示例

    接上篇:http://www.cnblogs.com/myrunning/p/4292049.html 1查看数据库版本 2查看当前数据库表空间 从这里看到我们此时数据库里没有加密表空间. 3创建加密 ...

  8. 【HDU 2853】 KM算法

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2853 题意:有n个公司,m个任务,每个公司做每个任务都有一个效率值,最开始每个公司都指派了一个任务,现 ...

  9. C# 截取字符串

    1.根据单个分隔字符用split截取 例如 string st="GT123_1"; string[] sArray=st.split("_"); 即可得到sA ...

  10. ajaxfileupload.js

    jQuery.extend({ createUploadIframe: function(id, uri) { //create frame var frameId = 'jUploadFrame' ...