cuda、cudnn、tnesorrt的查看安装
1、首先本地查看cuda已安装的版本 11.7
输入命令:【nvcc -V】
输出:
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Built on Wed_Jun__8_16:49:14_PDT_2022
Cuda compilation tools, release 11.7, V11.7.99
Build cuda_11.7.r11.7/compiler.31442593_0
1-2、查看cudnn已经安装的版本号 8.5.0
输入命令:【cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2】
输出:
#define CUDNN_MAJOR 8
#define CUDNN_MINOR 5
#define CUDNN_PATCHLEVEL 0
--
#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
2、通过在运行环境中查看 cuda 以及cudnn的版本号
本机配置环境:
Ubuntu 22.04
cuda 11.6
NVIDIA GeForce RTX 3070
pytorch 1.12.1
python3.9
如果使用conda 创建的环境需要激活相应的环境
进入相应的环境后
输入命令【python】进入python编译器
输出:
Python 3.9.12 (main, Jun 1 2022, 11:38:51)
[GCC 7.5.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
输入命令【import torch】
【print(torch.__version__)】 输出:torch 的版本号:1.12.1+cu116
【print(torch.version.cuda)】输出: 11.6
【print(torch.backends.cudnn.version())】输出:8500
Ubuntu安装tensorrt 8.2.5.1,cuda对应的版本有(10.2、11.0~11.7),cudnn对应的适配版本有(cudnn8.4.1及以下,或者cudnn8.2.1)
降低cudnn的版本,即将cudnn8.5.0降低至8.4.1
2-1、先删除系统原来的的cudnn
输入命令【sudo rm -rf /usr/local/cuda/include/cudnn.h】
【sudo rm -rf /usr/local/cuda/lib64/libcudnn*】
2-2、解压cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz (下载地址:https://developer.nvidia.com/rdp/cudnn-archive)
输入命令【tar zxvf cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz】
2-3、进入到解压后的文件里
输入命令:
【sudo cp include/cudnn* /usr/local/cuda/include】
【sudo cp lib/lib* /usr/local/cuda/lib64/】
【sudo chmod a+r /usr/local/cuda/include/cudnn*】
【sudo chmod a+r /usr/local/cuda/lib64/libcudnn*】
2-4、验证输入命令:
【cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2】
输出:
#define CUDNN_MAJOR 8
#define CUDNN_MINOR 4
#define CUDNN_PATCHLEVEL 1
--
#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
#endif /* CUDNN_VERSION_H */
3、安装 tensorrt
/home/cxf/下载/TensorRT-8.2.5.1.Linux.x86_64-gnu.cuda-10.2.cudnn8.2.tar.gz
首先解压该包,并进入解压后的文件
进入环境【conda activate 环境名】
查看python的版本
输出:
bin data doc graphsurgeon include lib onnx_graphsurgeon python samples targets uff
添加环境 【vim ~/.bashrc】
文件最后一行 输入【export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/xxx/environment/TensorRT-8.2.5.1/lib】(本机将TensorRT-8.2.5.1包放在/home/xxx/environment目录下)
【source ~/.bashrc】
分别进入python、graphsurgeon、uff文件夹下安装相应文件(直接pip install 包名),其中进入python文件,安装环境对应的python版本文件
验证
输入【python】
【import tensorrt】
【tensorrt.__version__】
Python 3.9.16 | packaged by conda-forge | (main, Feb 1 2023, 21:39:03)
[GCC 11.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorrt
>>> tensorrt.__version__
'8.2.5.1'
>>>
cuda、cudnn、tnesorrt的查看安装的更多相关文章
- cuda cudnn anaconda gcc tensorflow 安装及环境配置
1.首先,默认你已经装了适合你的显卡的nvidia驱动. 到 http://www.nvidia.com/Download/index.aspx 搜索你的显卡需要的驱动型号 那么接下来就是cuda的 ...
- # Ubuntu16.04安装nvidia驱动+CUDA+cuDNN
Ubuntu16.04安装nvidia驱动+CUDA+cuDNN 准备工作 1.查看GPU是否支持CUDA lspci | grep -i nvidia 2.查看Linux版本 uname -m &a ...
- 容器内安装nvidia,cuda,cudnn
/var/lib/docker/overlay2 占用很大,清理Docker占用的磁盘空间,迁移 /var/lib/docker 目录 du -hs /var/lib/docker/ 命令查看磁盘使用 ...
- cuda cudnn tensorflow-gpu安装
Ububtu18.04下载cuda9.0 下载好后得到: CUDA 9.0仅支持GCC 6.0及以下版本,而Ubuntu 18.04预装GCC版本为7.3,需要安装gcc-6与g++-6 查看当前版本 ...
- Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)
目录 前言 第一步:安装Anaconda 1.下载和安装 2.配置Anaconda环境变量 第二步:安装TensorFlow-GPU 1.创建conda环境 2.激活环境 3.安装tensorflow ...
- Ubuntu18.04安装Tensorflow+cuda+cuDNN
本文写的比较简单,期间遇到的一些小麻烦,自己不认为成为阻碍,所以没有详细写. 如有疑问可以联系QQ:2922530320 Pycharm Pycharm使用Anaconda Pycharm 在新建项目 ...
- 真实机下 ubuntu 18.04 安装GPU +CUDA+cuDNN 以及其版本选择(亲测非常实用)【转】
本文转载自:https://blog.csdn.net/u010801439/article/details/80483036 ubuntu 18.04 安装GPU +CUDA+cuDNN : 目前, ...
- Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)(转载)
win7(win10也适用)系统安装GPU/CPU版tensorflow Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程) 目录 2.配置 ...
- [框架安装趟雷指南]Ubuntu+1060+cuda+cudnn+Keras+TH+TF+MXnet
[框架安装趟雷指南]Ubuntu+1060+cuda+cudnn+Keras+TH+TF+MXnet https://zhuanlan.zhihu.com/p/23480983 天清 9 个月前 写这 ...
- ubuntu18.40 rtx2080ti安装显卡驱动/cuda/cudnn/tensorflow-gpu
电脑环境 ubuntu 18.40 gpu rtx2080ti 一.安装显卡驱动 刚开始尝试用手动安装方式安装驱动 下载了驱动程序但是因为没有gcc所以放弃这种方法 后尝试最简单的方式 在 菜单-- ...
随机推荐
- 1月12日内容总结——文件和文件索引、链接、系统时间、克隆、定时任务、paramiko模块、公钥私钥、paramiko代码封装
目录 一.文件相关信息 二.文件索引信息 三.链接信息 四.系统时间 五.机器克隆 六.定时任务 七.paramiko模块 八.公钥私钥 九.paramiko其他操作 十.代码封装 十一.面试题回忆 ...
- 12月5日内容总结——JS基础知识及变量常量、基本数据类型、运算符、流程控制、函数、内置对象
目录 一.JS简介 简介 ECMAScript的历史 二.JS基础 1.注释语法 2.引入js的多种方式 3.结束符号 三.变量与常量 编写和运行js代码的两种方式 变量声明 四.基本数据类型 1.数 ...
- python自动发布-优化版本
import sys import time import os import paramiko from pygments.lexers import shell baseconfig = { &q ...
- 一文详解数仓GaussDB(DWS) 函数出参带出方式
摘要:本文主要讲解DWS函数出参带出方式. 本文分享自华为云社区<GaussDB(DWS)功能 -- 函数出参 #[玩转PB级数仓GaussDB(DWS)]>,作者:譡里个檔 . DWS的 ...
- 记一次失败的StackOverflow回答
有一位同学在StackOverflow上提问,他想创建一个 Future 类,异步的实现 Future 的构造,当构造完成之后自动调用 .then 方法,执行后面的逻辑 class Features ...
- 【一句话】 OAuth 2
OAuth 就是一种授权机制.数据的所有者告诉系统,同意授权第三方应用进入系统,获取这些数据.系统从而产生一个短期的进入令牌(token),用来代替密码,供第三方应用使用
- day09-2-验证以及国际化
验证以及国际化 1.概述 (1)概述 对于输入的数据(比如表单数据),进行必要的验证,并给出相应的提示信息 对于验证表单数据,SpringMVC 提供了很多使用的注解,这些注解由 JSR 303验证框 ...
- Quartz.NET 任务调度框架的demo实例
1.新建项目 简单实例,新建一个控制台程序 2.Nuget安装Quartz 3.编写代码 using Quartz; using Quartz.Impl; using Quartz.Logging; ...
- C#操作注册表简单教程(附带操作某数据库客户端注册表以实现重置试用期的效果)
前言: 使用Windows系统,经常会遇到需要做注册表的操作.例如,一些软件需要修改注册表.自己编写的软件需要新建注册表进行写入注册信息等等.以下内容以某常见的数据库操作客户端为例,做一个注册表操作的 ...
- 安卓逆向 crmak的动态调试
1.java代码分析 检测是否输入密码,输入了就进行对比 由此,我们需要进入SO进行动态调试了 2.SO调试 过程太复杂,凌晨才搞出来,就直接给答案了,有文件检测和端口检测 还有调试检测,都需要干掉