cuda、cudnn、tnesorrt的查看安装
1、首先本地查看cuda已安装的版本 11.7
输入命令:【nvcc -V】
输出:
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Built on Wed_Jun__8_16:49:14_PDT_2022
Cuda compilation tools, release 11.7, V11.7.99
Build cuda_11.7.r11.7/compiler.31442593_0
1-2、查看cudnn已经安装的版本号 8.5.0
输入命令:【cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2】
输出:
#define CUDNN_MAJOR 8
#define CUDNN_MINOR 5
#define CUDNN_PATCHLEVEL 0
--
#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
2、通过在运行环境中查看 cuda 以及cudnn的版本号
本机配置环境:
Ubuntu 22.04
cuda 11.6
NVIDIA GeForce RTX 3070
pytorch 1.12.1
python3.9
如果使用conda 创建的环境需要激活相应的环境
进入相应的环境后
输入命令【python】进入python编译器
输出:
Python 3.9.12 (main, Jun 1 2022, 11:38:51)
[GCC 7.5.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
输入命令【import torch】
【print(torch.__version__)】 输出:torch 的版本号:1.12.1+cu116
【print(torch.version.cuda)】输出: 11.6
【print(torch.backends.cudnn.version())】输出:8500
Ubuntu安装tensorrt 8.2.5.1,cuda对应的版本有(10.2、11.0~11.7),cudnn对应的适配版本有(cudnn8.4.1及以下,或者cudnn8.2.1)
降低cudnn的版本,即将cudnn8.5.0降低至8.4.1
2-1、先删除系统原来的的cudnn
输入命令【sudo rm -rf /usr/local/cuda/include/cudnn.h】
【sudo rm -rf /usr/local/cuda/lib64/libcudnn*】
2-2、解压cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz (下载地址:https://developer.nvidia.com/rdp/cudnn-archive)
输入命令【tar zxvf cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar.xz】
2-3、进入到解压后的文件里
输入命令:
【sudo cp include/cudnn* /usr/local/cuda/include】
【sudo cp lib/lib* /usr/local/cuda/lib64/】
【sudo chmod a+r /usr/local/cuda/include/cudnn*】
【sudo chmod a+r /usr/local/cuda/lib64/libcudnn*】
2-4、验证输入命令:
【cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2】
输出:
#define CUDNN_MAJOR 8
#define CUDNN_MINOR 4
#define CUDNN_PATCHLEVEL 1
--
#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
#endif /* CUDNN_VERSION_H */
3、安装 tensorrt
/home/cxf/下载/TensorRT-8.2.5.1.Linux.x86_64-gnu.cuda-10.2.cudnn8.2.tar.gz
首先解压该包,并进入解压后的文件
进入环境【conda activate 环境名】
查看python的版本
输出:
bin data doc graphsurgeon include lib onnx_graphsurgeon python samples targets uff
添加环境 【vim ~/.bashrc】
文件最后一行 输入【export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/xxx/environment/TensorRT-8.2.5.1/lib】(本机将TensorRT-8.2.5.1包放在/home/xxx/environment目录下)
【source ~/.bashrc】
分别进入python、graphsurgeon、uff文件夹下安装相应文件(直接pip install 包名),其中进入python文件,安装环境对应的python版本文件
验证
输入【python】
【import tensorrt】
【tensorrt.__version__】
Python 3.9.16 | packaged by conda-forge | (main, Feb 1 2023, 21:39:03)
[GCC 11.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorrt
>>> tensorrt.__version__
'8.2.5.1'
>>>
cuda、cudnn、tnesorrt的查看安装的更多相关文章
- cuda cudnn anaconda gcc tensorflow 安装及环境配置
1.首先,默认你已经装了适合你的显卡的nvidia驱动. 到 http://www.nvidia.com/Download/index.aspx 搜索你的显卡需要的驱动型号 那么接下来就是cuda的 ...
- # Ubuntu16.04安装nvidia驱动+CUDA+cuDNN
Ubuntu16.04安装nvidia驱动+CUDA+cuDNN 准备工作 1.查看GPU是否支持CUDA lspci | grep -i nvidia 2.查看Linux版本 uname -m &a ...
- 容器内安装nvidia,cuda,cudnn
/var/lib/docker/overlay2 占用很大,清理Docker占用的磁盘空间,迁移 /var/lib/docker 目录 du -hs /var/lib/docker/ 命令查看磁盘使用 ...
- cuda cudnn tensorflow-gpu安装
Ububtu18.04下载cuda9.0 下载好后得到: CUDA 9.0仅支持GCC 6.0及以下版本,而Ubuntu 18.04预装GCC版本为7.3,需要安装gcc-6与g++-6 查看当前版本 ...
- Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)
目录 前言 第一步:安装Anaconda 1.下载和安装 2.配置Anaconda环境变量 第二步:安装TensorFlow-GPU 1.创建conda环境 2.激活环境 3.安装tensorflow ...
- Ubuntu18.04安装Tensorflow+cuda+cuDNN
本文写的比较简单,期间遇到的一些小麻烦,自己不认为成为阻碍,所以没有详细写. 如有疑问可以联系QQ:2922530320 Pycharm Pycharm使用Anaconda Pycharm 在新建项目 ...
- 真实机下 ubuntu 18.04 安装GPU +CUDA+cuDNN 以及其版本选择(亲测非常实用)【转】
本文转载自:https://blog.csdn.net/u010801439/article/details/80483036 ubuntu 18.04 安装GPU +CUDA+cuDNN : 目前, ...
- Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程)(转载)
win7(win10也适用)系统安装GPU/CPU版tensorflow Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程) 目录 2.配置 ...
- [框架安装趟雷指南]Ubuntu+1060+cuda+cudnn+Keras+TH+TF+MXnet
[框架安装趟雷指南]Ubuntu+1060+cuda+cudnn+Keras+TH+TF+MXnet https://zhuanlan.zhihu.com/p/23480983 天清 9 个月前 写这 ...
- ubuntu18.40 rtx2080ti安装显卡驱动/cuda/cudnn/tensorflow-gpu
电脑环境 ubuntu 18.40 gpu rtx2080ti 一.安装显卡驱动 刚开始尝试用手动安装方式安装驱动 下载了驱动程序但是因为没有gcc所以放弃这种方法 后尝试最简单的方式 在 菜单-- ...
随机推荐
- VUE 轮询、轮询终止 beforeRouteLeave
目录 1 在data中定义 2 在methods中定义 3 开始轮询 4 终止轮询 方法一: destroyed() 方法二:beforeRouteLeave(to, from, next) 推荐 所 ...
- Spring Boot启动时执行初始化操作三种方法分享
@PostConstruct对于注入到Spring容器中的类,在其成员函数前添加@PostConstruct注解,则在执行Spring beans初始化时,就会执行该函数.但由于该函数执行时,其他Sp ...
- java 金额计算
package com.example.test; import android.util.Log; import java.math.BigDecimal; import java.text.Dec ...
- 构建api gateway之 动态插件
动态插件 之前已经拆解细点逐个介绍了 tcp .http 代理相关核心点,现在介绍一个让 api gateway 变得很灵活的功能实现: 动态插件. 由于 lua 的动态语言特点,我们可以比较方便做到 ...
- 线程基础知识15-StampedLock
1 简介 StampedLock是JDK1.8中新增的一个读写锁,也是对JDK1.5中的读写锁ReentrantReadWriteLock的优化.在原先读写锁的基础上新增了一种叫乐观读(Optimis ...
- 2.3.pages.json文件的页面配置与全局配置
新建页面 # pages uni-app 通过 pages 节点配置应用由哪些页面组成,pages 节点接收一个数组,数组每个项都是一个对象,其属性值如下: 属性 类型 默认值 描述 path Str ...
- P2_小程序简介
小程序与普通网页开发的区别 运行环境不同 网页运行在浏览器环境中 小程序运行在微信环境中 API 不同 由于运行环境的不同,所以小程序中,无法调用 DOM 和 BOM 的 API. 但是,小程序中可以 ...
- while循环补充、for循环、range关键字、内置方法之整型、内置方法之浮点型、内置方法之字符串
目录 一.while循环补充 (1).while+continue (2).while+else(了解) (3).死循环 二.for循环 range关键字 for+break for+continue ...
- 多线程并发(二):聊聊AQS中的共享锁实现原理
在上一篇文章多线程并发(一)中我们通过acquire()详细地分析了AQS中的独占锁的获取流程,提到独占锁,自然少不了共享锁,所以我们这边文章就以AQS中的acquireShared()方法为例,来分 ...
- ctfshow_web入门 命令执行
命令执行 刚刚开始学习命令执行,萌新一个 因为是学习嘛,所以东西写的杂乱了 web 29 error_reporting(0); if(isset($_GET['c'])){ $c = $_GET[' ...