Bootcamp

Topics related to measure theory.

略去,详见测度论专栏中的文章


Expectations

令 \(X\) 为 \((\Omega, \mathcal{F}, P)\) 上的随机变量,\(\mathbb{E}[X]\) 为其期望。一些期望的特殊表示如下:

  • \(X: \Omega \rightarrow \mathbb{R}\) 为简单函数,即,\(X\) 在有限集 \(\left\{x_{1},\ldots, x_{n} \right\}\) 中取值,则:

    \[\mathbb{E}[X] := \sum\limits^{n}_{i=1} x_{i} P(X = x_{i})
    \]
  • \(X \geq 0\) almost surely,则:

    \[\mathbb{E}[X] := \sup \left\{ \mathbb{E}[Y]: ~ Y \mbox{ is simple, } ~ 0 \leq Y \leq X \mbox{ almost surely. } \right\}
    \]

    注意,非负随机变量的期望可能为 \(\infty\)。

  • \(\mathbb{E}[X^{+}]\) 或 \(\mathbb{E}[X^{-}]\) 其中之一是有限的,则:

    \[\mathbb{E}[X] := \mathbb{E}[X^{+}] - \mathbb{E}[X^{-}]
    \]
  • \(X\) 为一个向量,且 \(\mathbb{E}[|X|] < \infty\),则:

    \[\mathbb{E}\Big[\left(X_{1}, \ldots, X_{d}\right)\Big] := \Big( \mathbb{E}[X_{1}], \ldots, \mathbb{E}[X_{d}] \Big)
    \]

Jensen's Inequality (琴生不等式)

令 \(X\) 为一个随机变量,\(g: \mathbb{R} \rightarrow \mathbb{R}\) 为一个凸函数。那么当 \(X\) 的期望存在时:

\[\mathbb{E}[g(X)] \geq g\left(\mathbb{E}[X] \right)
\]

若 \(g\) 为严格凸函数,则以上不等式可随之写为严格大于的形式(除非 \(X\) 取常数值)。


  • 注(Convex function):

    函数 \(f: X \rightarrow \mathbb{R}\) 称作一个凸函数,如果:

    \[\forall ~ t \in [0, ~ 1]: ~ \forall ~ x_{1}, x_{2} \in X: ~ f\Big( tx_{1} + (1-t) x_{2} \Big) \leq t\cdot f(t x_{1}) + (1-t) \cdot f(x_{2})
    \]

Self-Financing Condition

A self-financing strategy is defined as a consumption stream \((c_{t})_{t\geq 0}\) which follows:

\[(c_{t} - c_{t+1})\cdot P_{t} = 0 \qquad \quad \mbox{for } \forall t \geq 0
\]

Numeraire (计价单位)

  • \((\eta_t)_{t\geq 0}\) 为 previsible process.

  • \(\eta_{t} \cdot P_{t} > 0\) almost surely, i.e., \(P(\eta_t \cdot P_{t} > 0) = 1\).

  • \((\eta_{t})_{t\geq 0}\) 满足 self-financing condition, i.e.,

    \[(\eta_{t} - \eta_{t+1}) \cdot P_{t} = 0 \qquad \quad \mbox{for } \forall t\geq 0
    \]

    这实际上意味着:

    \[\eta_{t} \cdot P_{t} = \eta_{t+1} \cdot P_{t} \qquad \qquad \text{for } ~ \forall t \geq 0
    \]

    注意,以上式子中两侧的 \(P_{t}\) 不能随手约去,因为等式两边是两个向量的内积运算。


Numeraire Asset

  • A numeraire asset is an asset with strictly positive price.

  • 若 asset \(i\) 为一个 numeraire asset,那么对于 \(\forall t \geq 0\),定义 constant portfolio \(\eta\):

    \[\eta_{t}^{j} = \begin{cases}
    1 \qquad \text{if } j = i\\
    0 \qquad \text{otherwise}
    \end{cases}
    \]

    为一个 numeraire portfolio。


Investment-Consumption Strategy

\[\begin{align*}
c_{0} & = x - H_{1} \cdot P_{0}\\
c_{t} & = (H_{t} - H_{t+1}) \cdot P_{t} \qquad \qquad \mbox{for } t \geq 1
\end{align*}
\]

其中 \(x\) 为初始财富。


Terminal Consumption Strategy

\[\begin{align*}
c_{0} & = -H_{1} \cdot P_{0} = 0\\
c_{t} & = (H_{t} - H_{t+1}) \cdot P_{t} = 0 \qquad \qquad \mbox{for } 1 \leq t \leq T-1\\
c_{T} & = H_{T} \cdot P_{T} \geq 0 \\
\mbox{and} \qquad \qquad \\
P( &c_{T} > 0) > 0
\end{align*}
\]

其中 \(H\) 为 previsible process,non-random \(T > 0\) 使得以上 holds almost surely。


Pure Investment Strategy

对于 \(\forall t \geq 0\),每一期持仓 \(H_{t}\),但将每一期的 consumption \(c_{t}\) 不用于消费,而是用于投资 numeraire portfolio \(\eta_{t}\)。


Theorem. 局部鞅 \(\rightarrow\) 鞅的充分条件 (local martingales to true martingales: sufficient condition)

令 \(X\) 为一个离散或连续的 local martingale,令过程 \((Y_{t})_{t\geq 0}\) 满足:

\[\mbox{for } ~ \forall ~ s,t, ~ 0 \leq s \leq t: ~ |X_{s}| \leq Y_{t} \mbox{ almost surely}
\]

若 \(\mathbb{E}[Y_{t}] \leq \infty, ~ \mbox{ for } ~ \forall ~ t \geq 0\),那么 \(X\) 为一个 true martingale。


证明:

由于 \((X_{t})_{t\leq 0}\) 为一个 local martingale,根据定义存在一个 stopping time series (localizing sequence):\((\tau_{N})_{N\geq0}\),满足 \(\lim \limits_{N \rightarrow \infty} \tau_{N} = \infty\),使得对于 \(\forall ~ N \geq 0\),\(\Big(X^{\tau_{N}}_{t}\Big)_{t \geq 0} = \Big(X_{t \land \tau_{N}}\Big)_{t\geq 0}\) 为 true martingale。

首先证明 \((X_{t})_{t\geq 0}\) 可积。对于任意 \(t \geq 0\),取任意 \(T \geq t\),根据条件:\(|X_{t}| \leq Y_{T}\) almost surely。又因为:\(\forall ~ T \geq 0: ~ \mathbb{E}[Y_{T}] < \infty\),那么:

\[\mbox{for } ~ \forall ~ t \geq 0: ~ |X_{t}| \leq Y_{T} \quad \implies \quad \mathbb{E}[X_{t}] \leq \mathbb{E}[Y_{T}] < \infty
\]

因此 \((X_{t})_{t\geq 0}\) integrable。

将 \(X_{t\land\tau_{N}}\) 视作一个下标为 \(N\) 的序列,即:

\[\Big\{ X_{t\land \tau_{N}} \Big\}_{N\geq 0} = X_{t\land \tau_{1}}, ~ X_{t\land \tau_{2}}, ~ X_{t\land \tau_{3}}, ~ \ldots
\]

注意到 \(X_{t\land \tau_{N}} = X_{\min(t, \tau_{N})} \longrightarrow X_{t}\) almost surely with \(N \longrightarrow \infty\),即:

\[\mbox{for } ~ \forall ~ t \geq 0: ~ \forall ~ \varepsilon > 0: ~ P\left( \lim\limits_{N \rightarrow \infty} \left| X_{t\land \tau_{N}} - X_{t} \right| > \varepsilon \right) = 0
\]

这是因为 \(\lim \limits_{N \rightarrow \infty} \tau_{N} = \infty\),\(t \land \tau_{N} = \min(t, \tau_{N})\) 自然随 \(N\) 增大而收敛于 \(t\)。

所以对于 \(\forall ~ 0 \leq s \leq t\):

\[\begin{align*}
\mathbb{E}[X_{t} ~ | ~ \mathcal{F}_{s}] & = \mathbb{E}\Big[\lim\limits_{N\rightarrow \infty}X_{t\land \tau_{N}} ~ | ~ \mathcal{F}_{s}\Big]\\
& = \lim\limits_{N \rightarrow \infty} \mathbb{E}\Big[ X_{t\land\tau_{N}} ~ | ~ \mathcal{F}_{s}\Big] \quad (\mbox{Dominated Convergence Theorem})\\
& = \lim\limits_{N \rightarrow \infty} X_{s \land \tau_{N}} \quad (\mathbf{*})\\
& = X_{s}
\end{align*}
\]

因此:local martingale \((X_{t})_{t\geq 0}\) 在给定的条件下也为一个 true martingale。


  • 注意:

    以上带星号的那一步推导中,鞅 \(\Big(X_{t\land\tau_{N}}\Big)_{t\geq 0}\) 的下标依然是 \(t\),尽管现在复合为 \(t\land \tau_{N}\)。因此在这一步中我们只需将 \(t\) 替换为 \(s\) 即可。


Corollary.

假设 \(X\) 一个 离散 时间 local martingale,使对于 \(\forall ~ t \geq 0: ~ \mathbb{E}[|X_{t}|] < \infty\),那么 \(X\) 是一个 true martingale。


证明:

令 \(Y_{t} = |X_{0}| + |X_{1}| + \cdots + |X_{t}|\)。Trivially:

\[Y_{t} = |X_{0}| + |X_{1}| + \cdots + |X_{t}| \geq |X_{s}| ~ \mbox{ for } ~ \forall s \in \left\{0, 1, \ldots, t \right\}
\]

并且由于:\(\forall ~ t \geq 0: ~ \mathbb{E}[|X_{t}|] < \infty\),那么:

\[\begin{align*}
\mathbb{E}[Y_{t}] & = \mathbb{E}\Big[ \left|X_{0}\right| + \left|X_{1}\right| + \cdots + \left|X_{t}\right| \Big]\\
& = \sum\limits^{t}_{s=0}\mathbb{E}\big[ \left| X_{s} \right| \big] < \infty
\end{align*}
\]

所以 \((Y_{t})_{t\geq 0}\) 可积,并且此时 \((X_{t})_{t \leq 0}\) 和 \((Y_{t})_{t\geq 0}\) 恰满足上述 Sufficient Condition,因此 \((X_{t})_{t\geq 0}\) 为一个 true martingale。


Supermartingale and Submartingale (上鞅与下鞅)

上鞅(Supermartingale)

相关于 filtration \(\mathcal{\left\{ F_{t} \right\}}_{t\geq 0}\) 的一个 supermartingale(上鞅)是一个 adapted stochastic process \((U_{t})_{t\geq 0}\),满足以下性质:

  • (Integrability)

    \[\forall ~ t \geq 0: ~ \mathbb{E}\big[\left| U_{t} \right|\big] < \infty
    \]
  • (Decrease in average)

    \[\forall ~ 0 \leq s \leq t: ~ \mathbb{E}\big[U_{t} ~ | ~ \mathcal{F}_{s}\big] \leq U_{s}
    \]

下鞅(Submartingale)

相关于 filtration \(\mathcal{\left\{ F_{t} \right\}}_{t\geq 0}\) 的一个 submartingale(下鞅)是一个 adapted stochastic process \((V_{t})_{t\geq 0}\),满足以下性质:

  • (Integrability)

    \[\forall ~ t \geq 0: ~ \mathbb{E}\big[ | V_{t} | \big] < \infty
    \]
  • (Increase in average)

    \[\forall ~ 0 \leq s \leq t: ~ \mathbb{E}\big[V_{t} ~ | ~ \mathcal{F}_{s}\big] \geq V_{s}
    \]

鞅、上鞅、下鞅

A martingale is a stochastic process that is both a supermartingale and a submartingale.


Theorem.

假设 \(X\) 是一个连续或离散时间上的 local martingale。如果 \(X_{t} \geq 0\) 对于 \(\forall ~ t \geq 0\) 都成立,那么 \(X\) 是一个 supermartingale(上鞅)。


证明:

令 \((\tau_{N})_{N\geq 0}\) 为相关于 local martingale \((X_{t})_{t\geq 0}\) 的 localizing sequence,即:

\[\forall ~ N \geq 0: ~ \Big(X^{\tau_{N}}_{t} \Big)_{t\geq 0} ~ \mbox{ is a true martingale.}
\]

首先证明 \((X_{t})_{t \geq 0 }\) 可积。由 Fatou's Lemma

\[\begin{align*}
\mathbb{E}\big[|X_{t}|\big] & = \mathbb{E}[X_{t}] \\
& = \mathbb{E}\Big[\lim\limits_{N \rightarrow \infty} X_{t \land \tau_{N}}\Big] \\
& = \mathbb{E}\Big[\liminf\limits_{N \rightarrow \infty} X_{t \land \tau_{N}}\Big] \\
& \leq \liminf\limits_{N \rightarrow \infty} \mathbb{E}\Big[X_{t\land \tau_{N}}\Big] \\
& = \liminf\limits_{N \rightarrow \infty} \mathbb{E}\Big[X_{t\land \tau_{N}} ~ \Big| ~ \mathcal{F}_{0} \Big] \\
& = X_{0} < \infty
\end{align*}
\]

在条件期望上运用 Fatou's Lemma,对于 \(\forall ~ 0 \leq s \leq t:\)

\[\begin{align*}
\mathbb{E}\big[X_{t} ~ | ~ \mathcal{F}_{s}\big] & = \mathbb{E}\Big[ \lim\limits_{N \rightarrow \infty} X_{t\land \tau_{N}} ~ \Big| ~ \mathcal{F}_{s} \Big] \\
& = \mathbb{E}\Big[ \liminf\limits_{N \rightarrow \infty} X_{t\land \tau_{N}} ~ \Big| ~ \mathcal{F}_{s} \Big] \\
& \leq \liminf_{N \rightarrow \infty} \mathbb{E}\Big[ X_{t\land \tau_{N}} ~ \Big| ~ \mathcal{F}_{s} \Big] \\
& = \liminf_{N \rightarrow \infty} X_{s \land \tau_{N}} \\
& = X_{s}
\end{align*}
\]

因此 \((X_{t})_{t\geq 0}\) 为一个 supermartingale(上鞅)。


Corollary.

如果 \((X_{t})_{t\geq 0}\) 是一个离散时间 local martingale,且对于任意 $ t \geq 0$,有 \(X_{t} \geq 0\) almost surely,那么 \((X_{t})_{t\geq 0}\) 是一个 true martingale。


证明:

通过上述 Theorem,我们有:

\[\mathbb{E}\big[|X_{t}|\big] = \mathbb{E}[X_{t}] \leq X_{0} < \infty
\]

由于 \(X\) 是可积的,通过上一条 Corollary 可以得出 \((X_{t})_{t\geq 0}\) 是一个 martingale 的结论。


Theorem.

假设:

\[X_{t} = X_{0} + \sum\limits^{t}_{s=1} K_{s} (M_{s} - M_{s-1})
\]

其中,\(K\) 是一个 previsible process,\(M\) 是一个 local martingale,\(X_{0}\) 是一个常数。

如果对于某些非随机的 \(T > 0\),有:\(X_{T} \geq 0\) almost surely,那么 \((X_{t})_{0\leq t \leq T}\) 是一个 true martingale。


证明:

略。(太长了,以后有机会补上。)


随机贴现因子(Stochastic Discount Factor / Pricing Kernel / State Price Density)

在一个没有股息的市场中,在时刻 \(s\) 和 \(t\) 间(\(0 \leq s < t\))的随机贴现因子是一个 adapted positive \(\mathcal{F}_{t}-\) measurable random variable \(\rho_{s,t}\), 使得:

\[P_{s} = \mathbb{E}\big[\rho_{s,t}P_{t} ~ | ~ \mathcal{F}_{s}\big]
\]

  • 令 \(Y\) 为一个 martingale deflator(i.e. \(\forall 0 \leq s < t: ~ \mathbb{E}[Y_{t}P_{t} ~ | ~ \mathcal{F}_{s}] = Y_{s}P_{s}\)),令 \(\rho_{s,t} = \frac{Y_{t}}{Y_{s}}\),若 \(\rho_{s,t}P_{t}\) 可积,那么 \(\rho_{s,t}\) 为时间 \(s\) 与 \(t\) 间的 pricing kernel。

    • 证明:

      对于 positivity,由于 \(Y\) 为 martingale deflator,则 \(\forall t \geq 0: ~ Y_{t} > 0\),所以 \(\rho_{s,t} = \frac{Y_{t}}{Y_{s}} > 0\),并且:

      \[\begin{align*}
      \mathbb{E} \big[ \rho_{s,t} P_{t} ~ | ~ \mathcal{F}_{s} \big] & = \mathbb{E} \Big[ \frac{Y_{t}}{Y_{s}} P_{t} ~ | ~ \mathcal{F}_{s} \Big] \\
      & = \frac{1}{Y_{s}} \mathbb{E} \big[ Y_{t}P_{t} ~ | ~ \mathcal{F}_{s} \big] \\
      & = \frac{1}{Y_{s}} \cdot Y_{s} P_{s} \\
      & = P_{s}
      \end{align*}
      \]

      因此 \(\rho_{s,t}\) 为一个 pricing kernel。

  • 相反地,对于 \(s\geq 0\),假设 \(\rho_{s, s+1}\) 为 时间 \(s\) 与 \(s+1\) 间的 pricing kernel,令 \(Y_{t} = \rho_{0,1} \rho_{1,2} \ldots \rho_{t-1, t}\),且 \(YP\) 可积,那么 \(Y\) 为一个 martingale deflator。

    • 证明:

      对于 \(\forall t \geq 0\),由于 pricing kernel 为正随机变量,则 \(Y_{t} = \rho_{0,1} \rho_{1,2} \ldots \rho_{t-1, t} > 0\),并且:

      \[\begin{align*}
      \mathbb{E} \big[Y_{t+1}P_{t+1} ~ \big| ~ \mathcal{F}_{t} \big] & = \mathbb{E} \big[\rho_{0,1} \rho_{1,2} \ldots \rho_{t-1, t} \rho_{t, t+1} \cdot P_{t+1} ~ \big| ~ \mathcal{F}_{t} \big] \\
      & = \rho_{0,1} \rho_{1,2} \ldots \rho_{t-1, t} \cdot \mathbb{E} \big[\rho_{t, t+1} \cdot P_{t+1} ~ \big| ~ \mathcal{F}_{t} \big] \qquad \text{(adaptness)}\\
      & = Y_{t} \cdot P_{t} \qquad \text{(by definition)}
      \end{align*}
      \]

      因此,\((Y_{t})_{t\geq 0}\) 为一个 martingale deflator。


Proposition.

考虑存在一个 numeraire \(\eta\) 的市场,且令:\(N_{t} = \eta_{t} \cdot P_{t} \quad \forall t \geq 0\)。令 \(H\) 为一个 investment-consumption strategy,即,\(H\) 的 consumption stream 定义为:

\[\begin{align*}
c_{0} & = x - H_{1} \cdot P_{0}\\
c_{t} & = (H_{t} - H_{t+1}) \cdot P_{t}
\end{align*}
\]

其中 \(x\) 为初始财富。令:

\[K_{t} = H_{t} + \eta_{t} \sum\limits_{s=0}^{t-1} \frac{c_{s}}{N_{s}}
\]

那么,\(K\) 为一个 pure-investment strategy from the same initial wealth \(x\)。

特殊地,当且仅当 \(K\) 为一个 terminal-consumption arbitrage 时,\(H\) 为一个 arbitrage。


证明:

\[\begin{align*}
(K_{t} - K_{t+1}) \cdot P_{t} & = \Big( H_{t} + \eta_{t}\sum\limits_{s=0}^{t-1}\frac{c_{s}}{N_{s}} - H_{t+1} - \eta_{t+1}\sum\limits_{s=0}^{t}\frac{c_{s}}{N_{s}} \Big) \cdot P_{t} \\
& = (H_{t} - H_{t+1}) \cdot P_{t} + \Big( \eta_{t}\sum\limits_{s=0}^{t-1}\frac{c_{s}}{N_{s}} - \eta_{t+1}\sum\limits_{s=0}^{t}\frac{c_{s}}{N_{s}} \Big) \cdot P_{t} \\
& = (H_{t} - H_{t+1}) \cdot P_{t} + \Big( \eta_{t}\sum\limits_{s=0}^{t}\frac{c_{s}}{N_{s}} - \eta_{t+1}\sum\limits_{s=0}^{t}\frac{c_{s}}{N_{s}} - \eta_{t} \frac{c_{t}}{N_{t}} \Big) \cdot P_{t} \\
& = (H_{t} - H_{t+1}) \cdot P_{t} + \Big( \big( \eta_{t} - \eta_{t+1} \big) \sum\limits_{s=0}^{t} \frac{c_{s}}{N_{s}} - \eta_{t} \frac{c_{t}}{N_{t}} \Big) \cdot P_{t} \\
& = (H_{t} - H_{t+1}) \cdot P_{t} - \eta_{t} \cdot P_{t} \frac{c_{t}}{N_{t}} + \big( \eta_{t} - \eta_{t+1} \big) \cdot P_{t} \sum\limits_{s=0}^{t}\frac{c_{s}}{N_{s}} \\
& = (H_{t} - H_{t+1}) \cdot P_{t} - \eta_{t} \cdot P_{t}\frac{c_{t}}{N_{t}} \qquad \text{(Investment-consumption strategy)} \\
& = c_{t} \cdot P_{t} - N_{t} \cdot \frac{c_{t}}{N_{t}} \qquad \text{(By definition)} \\
& = 0
\end{align*}
\]

因此,对于 \(\forall t \geq 0\),有:

\[(K_{t} - K_{t+1}) \cdot P_{t} = 0
\]

由假设:\((\eta_{t})_{t\geq 0}\) 为 pure-investment strategy,则 \((K_{t})_{t\geq 0}\) 亦为 pure-investment strategy。

假设对于 non-random \(T\),有:\(c_{T} = H_{T}\cdot P_{T}\),那么:

\[\begin{align*}
K_{T} \cdot P_{T} & = \Big( H_{T} + \eta_{T}\sum\limits_{s=0}^{T-1}\frac{c_{s}}{N_{s}} \Big) \cdot P_{T} \\
& = H_{T} \cdot P_{T} + \eta_{T} \cdot P_{T} \sum\limits_{s=0}^{T-1}\frac{c_{s}}{N_{s}} \\
& = c_{T} + N_{T} \sum\limits_{s=0}^{T-1}\frac{c_{s}}{N_{s}} \\
& = N_{T} \frac{c_{T}}{N_{T}} + N_{T} \sum\limits_{s=0}^{T-1}\frac{c_{s}}{N_{s}} \\
& = N_{T} \sum\limits_{s=0}^{T}\frac{c_{s}}{N_{s}} \\
\end{align*}
\]
\[\implies K_{T} \cdot P_{T} = N_{T} \sum\limits_{s=0}^{T}\frac{c_{s}}{N_{s}}
\]

则:当且仅当 某些 \(c_{t} ~ (0 \leq t \leq T)\) 取值为 strictly positive 时, 等式左侧 \(K_{T} \cdot P_{T}\) 为 strictly positive。


Lemma. (Bayes formula; from homework 5.)

令 \(\mathbb{P}\) 和 \(\mathbb{Q}\) 为定义在 \((\Omega, ~ \mathcal{F})\) 上的 equivalent probability measures,令 Radon - Nikodym derivative: \(Z = \frac{d\mathbb{Q}}{d\mathbb{P}}\),令 \(\mathcal{G} \subset \mathcal{F}\) 为一个 \(\sigma-\)field。那么:

\[\mathbb{E}^{\mathbb{Q}}\big[ X ~ \big| ~ \mathcal{G} \big] = \frac{\mathbb{E}^{\mathbb{P}}[ZX ~ | ~ \mathcal{G}]}{\mathbb{E}^{\mathbb{P}}[Z ~ | ~ \mathcal{G}]}
\]

证明:

令 \(Y = \frac{\mathbb{E}^{\mathbb{P}}[ZX ~ | ~ \mathcal{G}]}{\mathbb{E}^{\mathbb{P}}[Z ~ | ~ \mathcal{G}]}\),欲证:\(\mathbb{E}^{\mathbb{Q}}\big[ X ~ \big| ~ \mathcal{G} \big] = Y\),这等价于:

对于 \(\forall G \in \mathcal{G}\):

\[\begin{align*}
& \mathbb{E}^{\mathbb{Q}}\big[ X ~ \big| ~ \mathcal{G} \big] \cdot \mathbb{I}_{G} = Y \cdot \mathbb{I}_{G} \\
\iff \quad & \mathbb{E}^{\mathbb{Q}}\Big[ \mathbb{E}^{\mathbb{Q}}\big[ X ~ \big| ~ \mathcal{G} \big] \cdot \mathbb{I}_{G} \Big] = \mathbb{E}^{\mathbb{Q}} \Big[ Y \cdot \mathbb{I}_{G} \Big] \\
\iff \quad & \mathbb{E}^{\mathbb{Q}}\Big[ \mathbb{E}^{\mathbb{Q}}\big[ X \cdot \mathbb{I}_{G} ~ \big| ~ \mathcal{G} \big] \Big] = \mathbb{E}^{\mathbb{Q}} \Big[ Y \cdot \mathbb{I}_{G} \Big] \\
\iff \quad & \mathbb{E}^{\mathbb{Q}} \big[ X \cdot \mathbb{I}_{G} \big] = \mathbb{E}^{\mathbb{Q}} \Big[ Y \cdot \mathbb{I}_{G} \Big] \\
\iff \quad & \int_{G} ~ X ~ d\mathbb{Q} = \int_{G} ~ Y ~ d\mathbb{Q}
\end{align*}
\]

由 Radon-Nikodym derivative \(Z = \frac{d\mathbb{Q}}{d\mathbb{P}} \implies d\mathbb{Q} = Z \cdot d\mathbb{P}\):

\[\begin{align*}
& \int_{G} ~ X ~ d\mathbb{Q} = \int_{G} ~ Y ~ d\mathbb{Q} \\
\iff \quad & \int_{G} ~ X Z ~ d\mathbb{P} = \int_{G} ~ YZ ~ d\mathbb{P} \\
\iff \quad & \mathbb{E}^{\mathbb{P}}\big[ XZ \cdot \mathbb{I}_{G} \big] = \mathbb{E}^{\mathbb{P}}\big[ YZ \cdot \mathbb{I}_{G} \big]
\end{align*}
\]

因此,目标等价于证明:对于 \(\forall G \in \mathcal{G}\),有:

\[\mathbb{E}^{\mathbb{P}}\big[ XZ \cdot \mathbb{I}_{G} \big] = \mathbb{E}^{\mathbb{P}}\big[ YZ \cdot \mathbb{I}_{G} \big]
\]

注意到 \(Y = \mathbb{E}^{\mathbb{Q}}\big[ X ~ \big| ~ \mathcal{G} \big]\) 为 \(\mathcal{G}-\)measurable,那么RHS:

\[\begin{align*}
\mathbb{E}^{\mathbb{P}}\big[ YZ \cdot \mathbb{I}_{G} \big] & = \mathbb{E}^{\mathbb{P}} \Big[ \mathbb{E}^{\mathbb{P}}\big[ YZ \cdot \mathbb{I}_{G} ~ \big| ~ \mathcal{G} \big] \Big] \qquad \text{(Tower property)} \\
& = \mathbb{E}^{\mathbb{P}} \Big[ \mathbb{I}_{G}Y \cdot \mathbb{E}^{\mathbb{P}}\big[ Z ~ \big| ~ \mathcal{G} \big] \Big] \qquad \text{($\mathbb{I}_{G}Y$ is $\mathcal{G}-$measurable)} \\
& = \mathbb{E}^{\mathbb{P}} \Big[ \mathbb{I}_{G} \cdot \frac{\mathbb{E}^{\mathbb{P}}[ZX ~ | ~ \mathcal{G}]}{\mathbb{E}^{\mathbb{P}}[Z ~ | ~ \mathcal{G}]} \cdot \mathbb{E}^{\mathbb{P}}\big[ Z ~ \big| ~ \mathcal{G} \big] \Big] \\
& = \mathbb{E}^{\mathbb{P}} \Big[ \mathbb{I}_{G} \cdot \mathbb{E}^{\mathbb{P}} \big[ZX ~ \big| ~ \mathcal{G} \big] \Big] \\
& = \mathbb{E}^{\mathbb{P}} \Big[ \mathbb{E}^{\mathbb{P}} \big[ZX \cdot \mathbb{I}_{G} ~ \big| ~ \mathcal{G} \big] \Big] \qquad \text{($\mathbb{I}_{G}$ is $\mathcal{G}-$measurable)} \\
& = \mathbb{E}^{\mathbb{P}} \big[ ZX \cdot \mathbb{I}_{G} \big] \qquad \text{(Tower property)}
\end{align*}
\]

证毕。

Stochastic Methods in Finance (1)的更多相关文章

  1. 自然语言15.1_Part of Speech Tagging 词性标注

    QQ:231469242 欢迎喜欢nltk朋友交流 https://en.wikipedia.org/wiki/Part-of-speech_tagging In corpus linguistics ...

  2. 词性标注 parts of speech tagging

    In corpus linguistics, part-of-speech tagging (POS tagging or POST), also called grammatical tagging ...

  3. Deep Learning中的Large Batch Training相关理论与实践

    背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 在分布式训练时,提高计算通信占比是提高计算加速比的有效手段,当网络通信优化到一 ...

  4. Introduction To Monte Carlo Methods

    Introduction To Monte Carlo Methods I’m going to keep this tutorial light on math, because the goal ...

  5. Computational Methods in Bayesian Analysis

    Computational Methods in Bayesian Analysis Computational Methods in Bayesian Analysis  [Markov chain ...

  6. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week2, Assignment(Optimization Methods)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. 请不要ctrl+c/ctrl+v作业. Optimization Methods Until now, you've always u ...

  7. (转) Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance

    Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance 2018-1 ...

  8. History of Monte Carlo Methods - Part 1

    History of Monte Carlo Methods - Part 1 Some time ago in June 2013 I gave a lab tutorial on Monte Ca ...

  9. Stochastic Optimization Techniques

    Stochastic Optimization Techniques Neural networks are often trained stochastically, i.e. using a me ...

  10. 《Graph Neural Networks: A Review of Methods and Applications》阅读笔记

    本文是对文献 <Graph Neural Networks: A Review of Methods and Applications> 的内容总结,详细内容请参照原文. 引言 大量的学习 ...

随机推荐

  1. day12-Servlet02

    Servlet02 6.GET和POST请求的分发处理 开发Servlet,通常编写doGet,doPost方法.来对表单的get和post请求进行分发处理 例子 在web文件夹下面创建一个html页 ...

  2. 图扑软件 3D 组态编辑器,低代码零代码构建数字孪生工厂

    行业背景 随着中国制造 2025 计划的提出,新一轮的工业改革拉开序幕.大数据积累的指数级增长为智能商业爆发奠定了良好的基础,传统制造业高污染.高能耗.低效率的生产模式已不符合现代工业要求. 图扑拖拽 ...

  3. 2022春每日一题:Day 13

    题目:后缀排序 什么是后缀数组?他主要包含两个数组:sa和rk. 其中sa[i]表示将字符串后缀排序后第i小的编号,rk[i]表示后缀i的排名. 显然sa[rk[i]]=i,rk[sa[i]]=i. ...

  4. Django 接收到body后 json.loads() 报编码错误 且在报错之前打印body为空

    python版本 3.7.5 Django版本 3.2.5 猜测可能是Django版本的问题,因为之前并没有出现过如此奇葩的问题. body = request.body.decode('utf-8' ...

  5. 深度学习之深L层神经网络

    声明 本文参考(8条消息) [中文][吴恩达课后编程作业]Course 1 - 神经网络和深度学习 - 第四周作业(1&2)_何宽的博客-CSDN博客 力求自己理解,刚刚走进深度学习希望可以一 ...

  6. (GCC) C++代码中使用#pragma GCC optimize / #pragma G++ optimize

    科学计算用优化 经过实验证明这个命令优化效果最好,把我的 1.2S 的 FFT 优化到了 0.4S使用 pragma 命令优化程序: #pragma GCC optimize("Ofast, ...

  7. 关于python实现与体重秤蓝牙ble通信研究(Linux)

    前言 前几天买一个带蓝牙的体重秤,功能就是可以通过手机app连接,然后每一次称重都会记录下来,然后进行一些计算(体脂等),但是我不想用手机来操作,我习惯用电脑,就想写一个软件来与体重秤通信,记录我的每 ...

  8. PyTorch Geometric Temporal 介绍 —— 数据结构和RGCN的概念

    Introduction PyTorch Geometric Temporal is a temporal graph neural network extension library for PyT ...

  9. 谁说.NET没有GC调优?只改一行代码就让程序不再占用内存

    经常看到有群友调侃"为什么搞Java的总在学习JVM调优?那是因为Java烂!我们.NET就不需要搞这些!"真的是这样吗?今天我就用一个案例来分析一下. 昨天,一位学生问了我一个问 ...

  10. 【Day04】Spring Cloud 升华篇:容器化技术docker和kurbernetes

    一.介绍 1.要考虑的问题 微服务数量有很多 中间件的部署-nacos-server sentinel-server 如何部署多个服务和中间件? 2.存在问题---机器上直接解压使用 资源利用率的问题 ...