Bootcamp

Topics related to measure theory.

略去,详见测度论专栏中的文章


Expectations

令 \(X\) 为 \((\Omega, \mathcal{F}, P)\) 上的随机变量,\(\mathbb{E}[X]\) 为其期望。一些期望的特殊表示如下:

  • \(X: \Omega \rightarrow \mathbb{R}\) 为简单函数,即,\(X\) 在有限集 \(\left\{x_{1},\ldots, x_{n} \right\}\) 中取值,则:

    \[\mathbb{E}[X] := \sum\limits^{n}_{i=1} x_{i} P(X = x_{i})
    \]
  • \(X \geq 0\) almost surely,则:

    \[\mathbb{E}[X] := \sup \left\{ \mathbb{E}[Y]: ~ Y \mbox{ is simple, } ~ 0 \leq Y \leq X \mbox{ almost surely. } \right\}
    \]

    注意,非负随机变量的期望可能为 \(\infty\)。

  • \(\mathbb{E}[X^{+}]\) 或 \(\mathbb{E}[X^{-}]\) 其中之一是有限的,则:

    \[\mathbb{E}[X] := \mathbb{E}[X^{+}] - \mathbb{E}[X^{-}]
    \]
  • \(X\) 为一个向量,且 \(\mathbb{E}[|X|] < \infty\),则:

    \[\mathbb{E}\Big[\left(X_{1}, \ldots, X_{d}\right)\Big] := \Big( \mathbb{E}[X_{1}], \ldots, \mathbb{E}[X_{d}] \Big)
    \]

Jensen's Inequality (琴生不等式)

令 \(X\) 为一个随机变量,\(g: \mathbb{R} \rightarrow \mathbb{R}\) 为一个凸函数。那么当 \(X\) 的期望存在时:

\[\mathbb{E}[g(X)] \geq g\left(\mathbb{E}[X] \right)
\]

若 \(g\) 为严格凸函数,则以上不等式可随之写为严格大于的形式(除非 \(X\) 取常数值)。


  • 注(Convex function):

    函数 \(f: X \rightarrow \mathbb{R}\) 称作一个凸函数,如果:

    \[\forall ~ t \in [0, ~ 1]: ~ \forall ~ x_{1}, x_{2} \in X: ~ f\Big( tx_{1} + (1-t) x_{2} \Big) \leq t\cdot f(t x_{1}) + (1-t) \cdot f(x_{2})
    \]

Self-Financing Condition

A self-financing strategy is defined as a consumption stream \((c_{t})_{t\geq 0}\) which follows:

\[(c_{t} - c_{t+1})\cdot P_{t} = 0 \qquad \quad \mbox{for } \forall t \geq 0
\]

Numeraire (计价单位)

  • \((\eta_t)_{t\geq 0}\) 为 previsible process.

  • \(\eta_{t} \cdot P_{t} > 0\) almost surely, i.e., \(P(\eta_t \cdot P_{t} > 0) = 1\).

  • \((\eta_{t})_{t\geq 0}\) 满足 self-financing condition, i.e.,

    \[(\eta_{t} - \eta_{t+1}) \cdot P_{t} = 0 \qquad \quad \mbox{for } \forall t\geq 0
    \]

    这实际上意味着:

    \[\eta_{t} \cdot P_{t} = \eta_{t+1} \cdot P_{t} \qquad \qquad \text{for } ~ \forall t \geq 0
    \]

    注意,以上式子中两侧的 \(P_{t}\) 不能随手约去,因为等式两边是两个向量的内积运算。


Numeraire Asset

  • A numeraire asset is an asset with strictly positive price.

  • 若 asset \(i\) 为一个 numeraire asset,那么对于 \(\forall t \geq 0\),定义 constant portfolio \(\eta\):

    \[\eta_{t}^{j} = \begin{cases}
    1 \qquad \text{if } j = i\\
    0 \qquad \text{otherwise}
    \end{cases}
    \]

    为一个 numeraire portfolio。


Investment-Consumption Strategy

\[\begin{align*}
c_{0} & = x - H_{1} \cdot P_{0}\\
c_{t} & = (H_{t} - H_{t+1}) \cdot P_{t} \qquad \qquad \mbox{for } t \geq 1
\end{align*}
\]

其中 \(x\) 为初始财富。


Terminal Consumption Strategy

\[\begin{align*}
c_{0} & = -H_{1} \cdot P_{0} = 0\\
c_{t} & = (H_{t} - H_{t+1}) \cdot P_{t} = 0 \qquad \qquad \mbox{for } 1 \leq t \leq T-1\\
c_{T} & = H_{T} \cdot P_{T} \geq 0 \\
\mbox{and} \qquad \qquad \\
P( &c_{T} > 0) > 0
\end{align*}
\]

其中 \(H\) 为 previsible process,non-random \(T > 0\) 使得以上 holds almost surely。


Pure Investment Strategy

对于 \(\forall t \geq 0\),每一期持仓 \(H_{t}\),但将每一期的 consumption \(c_{t}\) 不用于消费,而是用于投资 numeraire portfolio \(\eta_{t}\)。


Theorem. 局部鞅 \(\rightarrow\) 鞅的充分条件 (local martingales to true martingales: sufficient condition)

令 \(X\) 为一个离散或连续的 local martingale,令过程 \((Y_{t})_{t\geq 0}\) 满足:

\[\mbox{for } ~ \forall ~ s,t, ~ 0 \leq s \leq t: ~ |X_{s}| \leq Y_{t} \mbox{ almost surely}
\]

若 \(\mathbb{E}[Y_{t}] \leq \infty, ~ \mbox{ for } ~ \forall ~ t \geq 0\),那么 \(X\) 为一个 true martingale。


证明:

由于 \((X_{t})_{t\leq 0}\) 为一个 local martingale,根据定义存在一个 stopping time series (localizing sequence):\((\tau_{N})_{N\geq0}\),满足 \(\lim \limits_{N \rightarrow \infty} \tau_{N} = \infty\),使得对于 \(\forall ~ N \geq 0\),\(\Big(X^{\tau_{N}}_{t}\Big)_{t \geq 0} = \Big(X_{t \land \tau_{N}}\Big)_{t\geq 0}\) 为 true martingale。

首先证明 \((X_{t})_{t\geq 0}\) 可积。对于任意 \(t \geq 0\),取任意 \(T \geq t\),根据条件:\(|X_{t}| \leq Y_{T}\) almost surely。又因为:\(\forall ~ T \geq 0: ~ \mathbb{E}[Y_{T}] < \infty\),那么:

\[\mbox{for } ~ \forall ~ t \geq 0: ~ |X_{t}| \leq Y_{T} \quad \implies \quad \mathbb{E}[X_{t}] \leq \mathbb{E}[Y_{T}] < \infty
\]

因此 \((X_{t})_{t\geq 0}\) integrable。

将 \(X_{t\land\tau_{N}}\) 视作一个下标为 \(N\) 的序列,即:

\[\Big\{ X_{t\land \tau_{N}} \Big\}_{N\geq 0} = X_{t\land \tau_{1}}, ~ X_{t\land \tau_{2}}, ~ X_{t\land \tau_{3}}, ~ \ldots
\]

注意到 \(X_{t\land \tau_{N}} = X_{\min(t, \tau_{N})} \longrightarrow X_{t}\) almost surely with \(N \longrightarrow \infty\),即:

\[\mbox{for } ~ \forall ~ t \geq 0: ~ \forall ~ \varepsilon > 0: ~ P\left( \lim\limits_{N \rightarrow \infty} \left| X_{t\land \tau_{N}} - X_{t} \right| > \varepsilon \right) = 0
\]

这是因为 \(\lim \limits_{N \rightarrow \infty} \tau_{N} = \infty\),\(t \land \tau_{N} = \min(t, \tau_{N})\) 自然随 \(N\) 增大而收敛于 \(t\)。

所以对于 \(\forall ~ 0 \leq s \leq t\):

\[\begin{align*}
\mathbb{E}[X_{t} ~ | ~ \mathcal{F}_{s}] & = \mathbb{E}\Big[\lim\limits_{N\rightarrow \infty}X_{t\land \tau_{N}} ~ | ~ \mathcal{F}_{s}\Big]\\
& = \lim\limits_{N \rightarrow \infty} \mathbb{E}\Big[ X_{t\land\tau_{N}} ~ | ~ \mathcal{F}_{s}\Big] \quad (\mbox{Dominated Convergence Theorem})\\
& = \lim\limits_{N \rightarrow \infty} X_{s \land \tau_{N}} \quad (\mathbf{*})\\
& = X_{s}
\end{align*}
\]

因此:local martingale \((X_{t})_{t\geq 0}\) 在给定的条件下也为一个 true martingale。


  • 注意:

    以上带星号的那一步推导中,鞅 \(\Big(X_{t\land\tau_{N}}\Big)_{t\geq 0}\) 的下标依然是 \(t\),尽管现在复合为 \(t\land \tau_{N}\)。因此在这一步中我们只需将 \(t\) 替换为 \(s\) 即可。


Corollary.

假设 \(X\) 一个 离散 时间 local martingale,使对于 \(\forall ~ t \geq 0: ~ \mathbb{E}[|X_{t}|] < \infty\),那么 \(X\) 是一个 true martingale。


证明:

令 \(Y_{t} = |X_{0}| + |X_{1}| + \cdots + |X_{t}|\)。Trivially:

\[Y_{t} = |X_{0}| + |X_{1}| + \cdots + |X_{t}| \geq |X_{s}| ~ \mbox{ for } ~ \forall s \in \left\{0, 1, \ldots, t \right\}
\]

并且由于:\(\forall ~ t \geq 0: ~ \mathbb{E}[|X_{t}|] < \infty\),那么:

\[\begin{align*}
\mathbb{E}[Y_{t}] & = \mathbb{E}\Big[ \left|X_{0}\right| + \left|X_{1}\right| + \cdots + \left|X_{t}\right| \Big]\\
& = \sum\limits^{t}_{s=0}\mathbb{E}\big[ \left| X_{s} \right| \big] < \infty
\end{align*}
\]

所以 \((Y_{t})_{t\geq 0}\) 可积,并且此时 \((X_{t})_{t \leq 0}\) 和 \((Y_{t})_{t\geq 0}\) 恰满足上述 Sufficient Condition,因此 \((X_{t})_{t\geq 0}\) 为一个 true martingale。


Supermartingale and Submartingale (上鞅与下鞅)

上鞅(Supermartingale)

相关于 filtration \(\mathcal{\left\{ F_{t} \right\}}_{t\geq 0}\) 的一个 supermartingale(上鞅)是一个 adapted stochastic process \((U_{t})_{t\geq 0}\),满足以下性质:

  • (Integrability)

    \[\forall ~ t \geq 0: ~ \mathbb{E}\big[\left| U_{t} \right|\big] < \infty
    \]
  • (Decrease in average)

    \[\forall ~ 0 \leq s \leq t: ~ \mathbb{E}\big[U_{t} ~ | ~ \mathcal{F}_{s}\big] \leq U_{s}
    \]

下鞅(Submartingale)

相关于 filtration \(\mathcal{\left\{ F_{t} \right\}}_{t\geq 0}\) 的一个 submartingale(下鞅)是一个 adapted stochastic process \((V_{t})_{t\geq 0}\),满足以下性质:

  • (Integrability)

    \[\forall ~ t \geq 0: ~ \mathbb{E}\big[ | V_{t} | \big] < \infty
    \]
  • (Increase in average)

    \[\forall ~ 0 \leq s \leq t: ~ \mathbb{E}\big[V_{t} ~ | ~ \mathcal{F}_{s}\big] \geq V_{s}
    \]

鞅、上鞅、下鞅

A martingale is a stochastic process that is both a supermartingale and a submartingale.


Theorem.

假设 \(X\) 是一个连续或离散时间上的 local martingale。如果 \(X_{t} \geq 0\) 对于 \(\forall ~ t \geq 0\) 都成立,那么 \(X\) 是一个 supermartingale(上鞅)。


证明:

令 \((\tau_{N})_{N\geq 0}\) 为相关于 local martingale \((X_{t})_{t\geq 0}\) 的 localizing sequence,即:

\[\forall ~ N \geq 0: ~ \Big(X^{\tau_{N}}_{t} \Big)_{t\geq 0} ~ \mbox{ is a true martingale.}
\]

首先证明 \((X_{t})_{t \geq 0 }\) 可积。由 Fatou's Lemma

\[\begin{align*}
\mathbb{E}\big[|X_{t}|\big] & = \mathbb{E}[X_{t}] \\
& = \mathbb{E}\Big[\lim\limits_{N \rightarrow \infty} X_{t \land \tau_{N}}\Big] \\
& = \mathbb{E}\Big[\liminf\limits_{N \rightarrow \infty} X_{t \land \tau_{N}}\Big] \\
& \leq \liminf\limits_{N \rightarrow \infty} \mathbb{E}\Big[X_{t\land \tau_{N}}\Big] \\
& = \liminf\limits_{N \rightarrow \infty} \mathbb{E}\Big[X_{t\land \tau_{N}} ~ \Big| ~ \mathcal{F}_{0} \Big] \\
& = X_{0} < \infty
\end{align*}
\]

在条件期望上运用 Fatou's Lemma,对于 \(\forall ~ 0 \leq s \leq t:\)

\[\begin{align*}
\mathbb{E}\big[X_{t} ~ | ~ \mathcal{F}_{s}\big] & = \mathbb{E}\Big[ \lim\limits_{N \rightarrow \infty} X_{t\land \tau_{N}} ~ \Big| ~ \mathcal{F}_{s} \Big] \\
& = \mathbb{E}\Big[ \liminf\limits_{N \rightarrow \infty} X_{t\land \tau_{N}} ~ \Big| ~ \mathcal{F}_{s} \Big] \\
& \leq \liminf_{N \rightarrow \infty} \mathbb{E}\Big[ X_{t\land \tau_{N}} ~ \Big| ~ \mathcal{F}_{s} \Big] \\
& = \liminf_{N \rightarrow \infty} X_{s \land \tau_{N}} \\
& = X_{s}
\end{align*}
\]

因此 \((X_{t})_{t\geq 0}\) 为一个 supermartingale(上鞅)。


Corollary.

如果 \((X_{t})_{t\geq 0}\) 是一个离散时间 local martingale,且对于任意 $ t \geq 0$,有 \(X_{t} \geq 0\) almost surely,那么 \((X_{t})_{t\geq 0}\) 是一个 true martingale。


证明:

通过上述 Theorem,我们有:

\[\mathbb{E}\big[|X_{t}|\big] = \mathbb{E}[X_{t}] \leq X_{0} < \infty
\]

由于 \(X\) 是可积的,通过上一条 Corollary 可以得出 \((X_{t})_{t\geq 0}\) 是一个 martingale 的结论。


Theorem.

假设:

\[X_{t} = X_{0} + \sum\limits^{t}_{s=1} K_{s} (M_{s} - M_{s-1})
\]

其中,\(K\) 是一个 previsible process,\(M\) 是一个 local martingale,\(X_{0}\) 是一个常数。

如果对于某些非随机的 \(T > 0\),有:\(X_{T} \geq 0\) almost surely,那么 \((X_{t})_{0\leq t \leq T}\) 是一个 true martingale。


证明:

略。(太长了,以后有机会补上。)


随机贴现因子(Stochastic Discount Factor / Pricing Kernel / State Price Density)

在一个没有股息的市场中,在时刻 \(s\) 和 \(t\) 间(\(0 \leq s < t\))的随机贴现因子是一个 adapted positive \(\mathcal{F}_{t}-\) measurable random variable \(\rho_{s,t}\), 使得:

\[P_{s} = \mathbb{E}\big[\rho_{s,t}P_{t} ~ | ~ \mathcal{F}_{s}\big]
\]

  • 令 \(Y\) 为一个 martingale deflator(i.e. \(\forall 0 \leq s < t: ~ \mathbb{E}[Y_{t}P_{t} ~ | ~ \mathcal{F}_{s}] = Y_{s}P_{s}\)),令 \(\rho_{s,t} = \frac{Y_{t}}{Y_{s}}\),若 \(\rho_{s,t}P_{t}\) 可积,那么 \(\rho_{s,t}\) 为时间 \(s\) 与 \(t\) 间的 pricing kernel。

    • 证明:

      对于 positivity,由于 \(Y\) 为 martingale deflator,则 \(\forall t \geq 0: ~ Y_{t} > 0\),所以 \(\rho_{s,t} = \frac{Y_{t}}{Y_{s}} > 0\),并且:

      \[\begin{align*}
      \mathbb{E} \big[ \rho_{s,t} P_{t} ~ | ~ \mathcal{F}_{s} \big] & = \mathbb{E} \Big[ \frac{Y_{t}}{Y_{s}} P_{t} ~ | ~ \mathcal{F}_{s} \Big] \\
      & = \frac{1}{Y_{s}} \mathbb{E} \big[ Y_{t}P_{t} ~ | ~ \mathcal{F}_{s} \big] \\
      & = \frac{1}{Y_{s}} \cdot Y_{s} P_{s} \\
      & = P_{s}
      \end{align*}
      \]

      因此 \(\rho_{s,t}\) 为一个 pricing kernel。

  • 相反地,对于 \(s\geq 0\),假设 \(\rho_{s, s+1}\) 为 时间 \(s\) 与 \(s+1\) 间的 pricing kernel,令 \(Y_{t} = \rho_{0,1} \rho_{1,2} \ldots \rho_{t-1, t}\),且 \(YP\) 可积,那么 \(Y\) 为一个 martingale deflator。

    • 证明:

      对于 \(\forall t \geq 0\),由于 pricing kernel 为正随机变量,则 \(Y_{t} = \rho_{0,1} \rho_{1,2} \ldots \rho_{t-1, t} > 0\),并且:

      \[\begin{align*}
      \mathbb{E} \big[Y_{t+1}P_{t+1} ~ \big| ~ \mathcal{F}_{t} \big] & = \mathbb{E} \big[\rho_{0,1} \rho_{1,2} \ldots \rho_{t-1, t} \rho_{t, t+1} \cdot P_{t+1} ~ \big| ~ \mathcal{F}_{t} \big] \\
      & = \rho_{0,1} \rho_{1,2} \ldots \rho_{t-1, t} \cdot \mathbb{E} \big[\rho_{t, t+1} \cdot P_{t+1} ~ \big| ~ \mathcal{F}_{t} \big] \qquad \text{(adaptness)}\\
      & = Y_{t} \cdot P_{t} \qquad \text{(by definition)}
      \end{align*}
      \]

      因此,\((Y_{t})_{t\geq 0}\) 为一个 martingale deflator。


Proposition.

考虑存在一个 numeraire \(\eta\) 的市场,且令:\(N_{t} = \eta_{t} \cdot P_{t} \quad \forall t \geq 0\)。令 \(H\) 为一个 investment-consumption strategy,即,\(H\) 的 consumption stream 定义为:

\[\begin{align*}
c_{0} & = x - H_{1} \cdot P_{0}\\
c_{t} & = (H_{t} - H_{t+1}) \cdot P_{t}
\end{align*}
\]

其中 \(x\) 为初始财富。令:

\[K_{t} = H_{t} + \eta_{t} \sum\limits_{s=0}^{t-1} \frac{c_{s}}{N_{s}}
\]

那么,\(K\) 为一个 pure-investment strategy from the same initial wealth \(x\)。

特殊地,当且仅当 \(K\) 为一个 terminal-consumption arbitrage 时,\(H\) 为一个 arbitrage。


证明:

\[\begin{align*}
(K_{t} - K_{t+1}) \cdot P_{t} & = \Big( H_{t} + \eta_{t}\sum\limits_{s=0}^{t-1}\frac{c_{s}}{N_{s}} - H_{t+1} - \eta_{t+1}\sum\limits_{s=0}^{t}\frac{c_{s}}{N_{s}} \Big) \cdot P_{t} \\
& = (H_{t} - H_{t+1}) \cdot P_{t} + \Big( \eta_{t}\sum\limits_{s=0}^{t-1}\frac{c_{s}}{N_{s}} - \eta_{t+1}\sum\limits_{s=0}^{t}\frac{c_{s}}{N_{s}} \Big) \cdot P_{t} \\
& = (H_{t} - H_{t+1}) \cdot P_{t} + \Big( \eta_{t}\sum\limits_{s=0}^{t}\frac{c_{s}}{N_{s}} - \eta_{t+1}\sum\limits_{s=0}^{t}\frac{c_{s}}{N_{s}} - \eta_{t} \frac{c_{t}}{N_{t}} \Big) \cdot P_{t} \\
& = (H_{t} - H_{t+1}) \cdot P_{t} + \Big( \big( \eta_{t} - \eta_{t+1} \big) \sum\limits_{s=0}^{t} \frac{c_{s}}{N_{s}} - \eta_{t} \frac{c_{t}}{N_{t}} \Big) \cdot P_{t} \\
& = (H_{t} - H_{t+1}) \cdot P_{t} - \eta_{t} \cdot P_{t} \frac{c_{t}}{N_{t}} + \big( \eta_{t} - \eta_{t+1} \big) \cdot P_{t} \sum\limits_{s=0}^{t}\frac{c_{s}}{N_{s}} \\
& = (H_{t} - H_{t+1}) \cdot P_{t} - \eta_{t} \cdot P_{t}\frac{c_{t}}{N_{t}} \qquad \text{(Investment-consumption strategy)} \\
& = c_{t} \cdot P_{t} - N_{t} \cdot \frac{c_{t}}{N_{t}} \qquad \text{(By definition)} \\
& = 0
\end{align*}
\]

因此,对于 \(\forall t \geq 0\),有:

\[(K_{t} - K_{t+1}) \cdot P_{t} = 0
\]

由假设:\((\eta_{t})_{t\geq 0}\) 为 pure-investment strategy,则 \((K_{t})_{t\geq 0}\) 亦为 pure-investment strategy。

假设对于 non-random \(T\),有:\(c_{T} = H_{T}\cdot P_{T}\),那么:

\[\begin{align*}
K_{T} \cdot P_{T} & = \Big( H_{T} + \eta_{T}\sum\limits_{s=0}^{T-1}\frac{c_{s}}{N_{s}} \Big) \cdot P_{T} \\
& = H_{T} \cdot P_{T} + \eta_{T} \cdot P_{T} \sum\limits_{s=0}^{T-1}\frac{c_{s}}{N_{s}} \\
& = c_{T} + N_{T} \sum\limits_{s=0}^{T-1}\frac{c_{s}}{N_{s}} \\
& = N_{T} \frac{c_{T}}{N_{T}} + N_{T} \sum\limits_{s=0}^{T-1}\frac{c_{s}}{N_{s}} \\
& = N_{T} \sum\limits_{s=0}^{T}\frac{c_{s}}{N_{s}} \\
\end{align*}
\]
\[\implies K_{T} \cdot P_{T} = N_{T} \sum\limits_{s=0}^{T}\frac{c_{s}}{N_{s}}
\]

则:当且仅当 某些 \(c_{t} ~ (0 \leq t \leq T)\) 取值为 strictly positive 时, 等式左侧 \(K_{T} \cdot P_{T}\) 为 strictly positive。


Lemma. (Bayes formula; from homework 5.)

令 \(\mathbb{P}\) 和 \(\mathbb{Q}\) 为定义在 \((\Omega, ~ \mathcal{F})\) 上的 equivalent probability measures,令 Radon - Nikodym derivative: \(Z = \frac{d\mathbb{Q}}{d\mathbb{P}}\),令 \(\mathcal{G} \subset \mathcal{F}\) 为一个 \(\sigma-\)field。那么:

\[\mathbb{E}^{\mathbb{Q}}\big[ X ~ \big| ~ \mathcal{G} \big] = \frac{\mathbb{E}^{\mathbb{P}}[ZX ~ | ~ \mathcal{G}]}{\mathbb{E}^{\mathbb{P}}[Z ~ | ~ \mathcal{G}]}
\]

证明:

令 \(Y = \frac{\mathbb{E}^{\mathbb{P}}[ZX ~ | ~ \mathcal{G}]}{\mathbb{E}^{\mathbb{P}}[Z ~ | ~ \mathcal{G}]}\),欲证:\(\mathbb{E}^{\mathbb{Q}}\big[ X ~ \big| ~ \mathcal{G} \big] = Y\),这等价于:

对于 \(\forall G \in \mathcal{G}\):

\[\begin{align*}
& \mathbb{E}^{\mathbb{Q}}\big[ X ~ \big| ~ \mathcal{G} \big] \cdot \mathbb{I}_{G} = Y \cdot \mathbb{I}_{G} \\
\iff \quad & \mathbb{E}^{\mathbb{Q}}\Big[ \mathbb{E}^{\mathbb{Q}}\big[ X ~ \big| ~ \mathcal{G} \big] \cdot \mathbb{I}_{G} \Big] = \mathbb{E}^{\mathbb{Q}} \Big[ Y \cdot \mathbb{I}_{G} \Big] \\
\iff \quad & \mathbb{E}^{\mathbb{Q}}\Big[ \mathbb{E}^{\mathbb{Q}}\big[ X \cdot \mathbb{I}_{G} ~ \big| ~ \mathcal{G} \big] \Big] = \mathbb{E}^{\mathbb{Q}} \Big[ Y \cdot \mathbb{I}_{G} \Big] \\
\iff \quad & \mathbb{E}^{\mathbb{Q}} \big[ X \cdot \mathbb{I}_{G} \big] = \mathbb{E}^{\mathbb{Q}} \Big[ Y \cdot \mathbb{I}_{G} \Big] \\
\iff \quad & \int_{G} ~ X ~ d\mathbb{Q} = \int_{G} ~ Y ~ d\mathbb{Q}
\end{align*}
\]

由 Radon-Nikodym derivative \(Z = \frac{d\mathbb{Q}}{d\mathbb{P}} \implies d\mathbb{Q} = Z \cdot d\mathbb{P}\):

\[\begin{align*}
& \int_{G} ~ X ~ d\mathbb{Q} = \int_{G} ~ Y ~ d\mathbb{Q} \\
\iff \quad & \int_{G} ~ X Z ~ d\mathbb{P} = \int_{G} ~ YZ ~ d\mathbb{P} \\
\iff \quad & \mathbb{E}^{\mathbb{P}}\big[ XZ \cdot \mathbb{I}_{G} \big] = \mathbb{E}^{\mathbb{P}}\big[ YZ \cdot \mathbb{I}_{G} \big]
\end{align*}
\]

因此,目标等价于证明:对于 \(\forall G \in \mathcal{G}\),有:

\[\mathbb{E}^{\mathbb{P}}\big[ XZ \cdot \mathbb{I}_{G} \big] = \mathbb{E}^{\mathbb{P}}\big[ YZ \cdot \mathbb{I}_{G} \big]
\]

注意到 \(Y = \mathbb{E}^{\mathbb{Q}}\big[ X ~ \big| ~ \mathcal{G} \big]\) 为 \(\mathcal{G}-\)measurable,那么RHS:

\[\begin{align*}
\mathbb{E}^{\mathbb{P}}\big[ YZ \cdot \mathbb{I}_{G} \big] & = \mathbb{E}^{\mathbb{P}} \Big[ \mathbb{E}^{\mathbb{P}}\big[ YZ \cdot \mathbb{I}_{G} ~ \big| ~ \mathcal{G} \big] \Big] \qquad \text{(Tower property)} \\
& = \mathbb{E}^{\mathbb{P}} \Big[ \mathbb{I}_{G}Y \cdot \mathbb{E}^{\mathbb{P}}\big[ Z ~ \big| ~ \mathcal{G} \big] \Big] \qquad \text{($\mathbb{I}_{G}Y$ is $\mathcal{G}-$measurable)} \\
& = \mathbb{E}^{\mathbb{P}} \Big[ \mathbb{I}_{G} \cdot \frac{\mathbb{E}^{\mathbb{P}}[ZX ~ | ~ \mathcal{G}]}{\mathbb{E}^{\mathbb{P}}[Z ~ | ~ \mathcal{G}]} \cdot \mathbb{E}^{\mathbb{P}}\big[ Z ~ \big| ~ \mathcal{G} \big] \Big] \\
& = \mathbb{E}^{\mathbb{P}} \Big[ \mathbb{I}_{G} \cdot \mathbb{E}^{\mathbb{P}} \big[ZX ~ \big| ~ \mathcal{G} \big] \Big] \\
& = \mathbb{E}^{\mathbb{P}} \Big[ \mathbb{E}^{\mathbb{P}} \big[ZX \cdot \mathbb{I}_{G} ~ \big| ~ \mathcal{G} \big] \Big] \qquad \text{($\mathbb{I}_{G}$ is $\mathcal{G}-$measurable)} \\
& = \mathbb{E}^{\mathbb{P}} \big[ ZX \cdot \mathbb{I}_{G} \big] \qquad \text{(Tower property)}
\end{align*}
\]

证毕。

Stochastic Methods in Finance (1)的更多相关文章

  1. 自然语言15.1_Part of Speech Tagging 词性标注

    QQ:231469242 欢迎喜欢nltk朋友交流 https://en.wikipedia.org/wiki/Part-of-speech_tagging In corpus linguistics ...

  2. 词性标注 parts of speech tagging

    In corpus linguistics, part-of-speech tagging (POS tagging or POST), also called grammatical tagging ...

  3. Deep Learning中的Large Batch Training相关理论与实践

    背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 在分布式训练时,提高计算通信占比是提高计算加速比的有效手段,当网络通信优化到一 ...

  4. Introduction To Monte Carlo Methods

    Introduction To Monte Carlo Methods I’m going to keep this tutorial light on math, because the goal ...

  5. Computational Methods in Bayesian Analysis

    Computational Methods in Bayesian Analysis Computational Methods in Bayesian Analysis  [Markov chain ...

  6. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week2, Assignment(Optimization Methods)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. 请不要ctrl+c/ctrl+v作业. Optimization Methods Until now, you've always u ...

  7. (转) Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance

    Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance 2018-1 ...

  8. History of Monte Carlo Methods - Part 1

    History of Monte Carlo Methods - Part 1 Some time ago in June 2013 I gave a lab tutorial on Monte Ca ...

  9. Stochastic Optimization Techniques

    Stochastic Optimization Techniques Neural networks are often trained stochastically, i.e. using a me ...

  10. 《Graph Neural Networks: A Review of Methods and Applications》阅读笔记

    本文是对文献 <Graph Neural Networks: A Review of Methods and Applications> 的内容总结,详细内容请参照原文. 引言 大量的学习 ...

随机推荐

  1. 嵌入式-C语言基础:通过结构体指针访问结构体数组

    #include<stdio.h> #include<string.h> struct Student { char name[32]; int age; int height ...

  2. xmind下载安装破解版激活教程思维导图软件获取

    1.xmind下载解压压缩包就可以看到里面的文件,然后双击安装文件就可以开始安装了 2.安装Xmind程序双击之后会出现下面的流程,照着截图操作,不要乱点哈 切记切记!!这一步直接点击next,不要修 ...

  3. win10+vs2019 编译webrtc m108

    不能访问外网途径的捷径 已经下载好的资源,可以直接生成工程: https://pan.baidu.com/s/14plvXZD_qX9nn441RbsCwA?pwd=ww8c 该资源可以跳过的步骤 步 ...

  4. toB应用私有化交付发展历程、技术对比和选型

    由于数据隐私和网络安全的考虑,大多数toB场景的客户需要私有化应用交付,也就是需要交付到客户的环境里,这样的客户有政府.金融.军工.公安.大型企业.特色行业等,这些私有化场景限制很多,如何提高私有化应 ...

  5. IOS AND Android 配置Fiddler环境

    下载:http://rj.baidu.com/soft/detail/10963.html?ald 运行Fiddler点击Tools: 选择设置选项:   1.     选择HTTPS新选项卡. 2. ...

  6. SSH(一)架包的引入

    一年多未使用了,有些东西真的会忘. 一.ssh的图形化记忆运作流程 二.Struts2.hibernate.spring需要引用的jar包 Struts2: 基本开发:struts-2.3.32\ap ...

  7. ArcGIS QGIS学习二:图层如何只显示需要的部分几何面数据(附最新坐标边界下载全国省市区县乡镇)

    目录 前言 准备SHP数据 ArcMap 的筛选 QGIS 的筛选 如何编写查询条件 前言 当我们用GIS软件打开一个SHP文件的时候,会显示出里面全部的几何图形,假如我只想要其中的一部分数据显示出来 ...

  8. 零基础入门数据挖掘——二手车交易价格预测:baseline

    零基础入门数据挖掘 - 二手车交易价格预测 赛题理解 比赛要求参赛选手根据给定的数据集,建立模型,二手汽车的交易价格. 赛题以预测二手车的交易价格为任务,数据集报名后可见并可下载,该数据来自某交易平台 ...

  9. 01-复杂度2 Maximum Subsequence Sum (25分)

    Sample Input: 10 -10 1 2 3 4 -5 -23 3 7 -21 Sample Output: 10 1 4 题目有一个测试点是"最大和前面有一段是0",所以 ...

  10. python中的数学函数