ONNXRuntime学习笔记(三)
接上一篇完成的pytorch模型训练结果,模型结构为ResNet18+fc,参数量约为11M,最终测试集Acc达到94.83%。接下来有分两个部分:导出onnx和使用onnxruntime推理。
一、pytorch导出onnx
直接放函数吧,这部分我是直接放在test.py里面的,直接从dataloader中拿到一个batch的数据走一遍推理即可。
def export_onnx(net, testloader, output_file):
net.eval()
with torch.no_grad():
for data in testloader:
images, labels = data
torch.onnx.export(net,
(images),
output_file,
training=False,
do_constant_folding=True,
input_names=["img"],
output_names=["output"],
dynamic_axes={"img": {0: "b"},"output": {0: "b"}}
)
print("onnx export done!")
break
上面函数中几个比较重要的参数:do_constant_folding是常量折叠,建议打开;输入张量通过一个tuple传入,并且最好指定每个输入和输出的名称,此外,为保证使用onnxruntime推理的时候batchsize可变,dynamic_axes的第一维需要像上述一样设置为动态的。如果是全卷积做分割的网络,类似的输入h和w也应该是动态的。
单独运行test.py计算测试集效果和平均相应时间,为方便比较,这里batch_size设置为1,结果为:
Test Acc is: 94.84%
Average response time cost: 8.703978610038757 ms
二、使用onnxruntime推理
这里我们使用gpu版本的onnxruntime库进行推理,其python包可直接pip install onnxruntime-gpu
安装。onnxruntime推理代码和测试集推理代码很类似,如下:
import numpy as np
import onnxruntime as ort
import argparse, os
from lib import CIFARDataset
def onnxruntime_test(session, testloader):
print("Start Testing!")
input_name = session.get_inputs()[0].name
correct = 0
total = 0 # 计数归零(初始化)
for data in testloader:
images, labels = data
images, labels = images.numpy(), labels.numpy()
outputs = session.run(None, {input_name:images})
predicted = np.argmax(outputs[0], axis=1) # 取得分最高的那个类
total += labels.shape[0] # 累加样本总数
correct += (predicted == labels).sum() # 累加预测正确的样本个数
acc = correct / total
print('ONNXRuntime Test Acc is: %.2f%%' % (100*acc))
if __name__ == '__main__':
# 命令行参数解析
parser = argparse.ArgumentParser("CNN backbone on cifar10")
parser.add_argument('--onnx', default='./output/test_resnet18_10_autoaug/densenet_best.onnx')
args = parser.parse_args()
NUM_CLASS =10
BATCH_SIZE = 1 # 批处理尺寸(batch_size)
# 数据集迭代器
data_path="./data"
dataset = CIFARDataset(dataset_path=data_path, batchsize=BATCH_SIZE)
_, testloader = dataset.get_cifar10_dataloader()
# 构建session
sess = ort.InferenceSession(args.onnx, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
#onnxruntime推理
import time
start = time.time()
onnxruntime_test(sess, testloader)
end = time.time()
print(f"Average response time cost: {1000*(end-start)/len(testloader.dataset)} ms")
使用onnxruntime加载导出的onnx模型,计算测试集效果和平均响应时间,结果为:
ONNXRuntime Test Acc is: 94.83%
Average response time cost: 3.1050602436065673 ms
三、小结
分析上面的pytorch和onnxruntime的测试结果可知,最终测试集效果是一致的,Acc分别为94.84%和94.83%,相当于10000个样本里面只有1个的预测结果不一致,这是可以接受范围内。但onnxruntime的效率更高,平均耗时只有3.1ms,比pytorch的8.7ms快了将近3倍。这在实际部署中的优势是非常明显的。目前Python端的结论比最初目标设定的50ms高很多,如果说需要进一步优化,两个方向:模型量化或并行化推理(拼batch或多线程)。下一篇再分析。
ONNXRuntime学习笔记(三)的更多相关文章
- Oracle学习笔记三 SQL命令
SQL简介 SQL 支持下列类别的命令: 1.数据定义语言(DDL) 2.数据操纵语言(DML) 3.事务控制语言(TCL) 4.数据控制语言(DCL)
- [Firefly引擎][学习笔记三][已完结]所需模块封装
原地址:http://www.9miao.com/question-15-54671.html 学习笔记一传送门学习笔记二传送门 学习笔记三导读: 笔记三主要就是各个模块的封装了,这里贴 ...
- JSP学习笔记(三):简单的Tomcat Web服务器
注意:每次对Tomcat配置文件进行修改后,必须重启Tomcat 在E盘的DATA文件夹中创建TomcatDemo文件夹,并将Tomcat安装路径下的webapps/ROOT中的WEB-INF文件夹复 ...
- java之jvm学习笔记三(Class文件检验器)
java之jvm学习笔记三(Class文件检验器) 前面的学习我们知道了class文件被类装载器所装载,但是在装载class文件之前或之后,class文件实际上还需要被校验,这就是今天的学习主题,cl ...
- VSTO学习笔记(三) 开发Office 2010 64位COM加载项
原文:VSTO学习笔记(三) 开发Office 2010 64位COM加载项 一.加载项简介 Office提供了多种用于扩展Office应用程序功能的模式,常见的有: 1.Office 自动化程序(A ...
- Java IO学习笔记三
Java IO学习笔记三 在整个IO包中,实际上就是分为字节流和字符流,但是除了这两个流之外,还存在了一组字节流-字符流的转换类. OutputStreamWriter:是Writer的子类,将输出的 ...
- NumPy学习笔记 三 股票价格
NumPy学习笔记 三 股票价格 <NumPy学习笔记>系列将记录学习NumPy过程中的动手笔记,前期的参考书是<Python数据分析基础教程 NumPy学习指南>第二版.&l ...
- Learning ROS for Robotics Programming Second Edition学习笔记(三) 补充 hector_slam
中文译著已经出版,详情请参考:http://blog.csdn.net/ZhangRelay/article/category/6506865 Learning ROS for Robotics Pr ...
- Learning ROS for Robotics Programming Second Edition学习笔记(三) indigo rplidar rviz slam
中文译著已经出版,详情请参考:http://blog.csdn.net/ZhangRelay/article/category/6506865 Learning ROS for Robotics Pr ...
随机推荐
- 如何建立一个JDBC程序?
import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sq ...
- JdbcTemplate?
JdbcTemplate 类提供了很多便利的方法解决诸如把数据库数据转变成基本数据类型或对象,执行写好的或可调用的数据库操作语句,提供自定义的数据错误处理.
- 写一段代码在遍历 ArrayList 时移除一个元素?
该问题的关键在于面试者使用的是 ArrayList 的 remove() 还是 Iterator 的 remove()方法.这有一段示例代码,是使用正确的方式来实现在遍历的过程中移 除元素,而不会出现 ...
- 集合流之“将List<Integer>转为String并用逗号分割”
1.使用[流+Collectors]转换 import java.util.ArrayList; import java.util.List; import java.util.stream.Coll ...
- 让IE兼容background-size的方法_background-size ie下使用
ie6,ie7,ie8下对css background-size并不支持,那么如何在ie下兼容background-size呢?在ie下把图片完整的居中显示在一定范围内在css中添加如下代码: fil ...
- Top 15 - Material Design框架和类库(译)
_Material design_是Google开发的,目的是为了统一公司的web端和手机端的产品风格.它是基于很多的原则,比如像合适的动画,响应式,以及颜色和阴影的使用.完整的指南详情请看这里(ht ...
- 聊聊 DisplayObject 的x/y/regX/regY/rotation/scale/skew 属性
首先要指出的是:DisplayObject 实例的属性<x, y> 与 graphics.draw*(x, y, ...) 的参数<x, y>没有关系. 在原生的 Canvas ...
- php实验一 html网页设计
页面展示: 源码demo: 等我传到github
- tf.test.is_gpu_available() 返回结果为False解决办法
安装完gpu版本的tensorflow,导入正常,但是tf.test.is_gpu_available()一直返回False,解决办法: 1.打开NVIDIA控制面板,查看CUDA的驱动版本,如果版本 ...
- Blazor组件自做八 : 使用JS隔离封装屏幕键盘kioskboard.js组件
1. 运行截图 演示地址 2. 在文件夹wwwroot/lib,添加kioskboard子文件夹,添加kioskboards.js文件 2.1 常规操作,懒加载js库, export function ...