题解【洛谷 P1466 [USACO2.2]集合 Subset Sums】
设 \(sum=1+2+3+4+\dots+n=\dfrac{n(n+1)}{2}\)。
- 如果 \(2\nmid sum\),则显然没有方案。
- 如果 \(2\mid sum\),则这两个集合的和必为 \(\dfrac{sum}{2}\)。
将 \(\dfrac{sum}{2}\) 作为容量跑 0-1 背包即可。
Code:
#include<iostream>
using namespace std;
const int N=45,SUM=785;
typedef long long ll; //必须开 long long/dk
ll dp[SUM],n,sum;
int main()
{
cin>>n;
sum=(1+n)*n/2; //计算 sum
if (sum&1){cout<<0;return 0;} //特判
sum/=2; dp[0]=1; //初始化
for (int i=1;i<=n;i++)
for (int j=sum;j>=0;j--)
if (j>=i) dp[j]+=dp[j-i]; //i 为重量,价值为 0,算方案数要将 max 换成 sum。
cout<<dp[sum]/2; //输出要 /2
return 0;
}
题解【洛谷 P1466 [USACO2.2]集合 Subset Sums】的更多相关文章
- 题解-洛谷P4139 上帝与集合的正确用法
上帝与集合的正确用法 \(T\) 组数据,每次给定 \(p\),求 \[\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod p ...
- 洛谷P1466 集合 Subset Sums
P1466 集合 Subset Sums 162通过 308提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交 讨论 题解 最新讨论 暂时没有讨论 题目描述 对于从1到N (1 ...
- DP | Luogu P1466 集合 Subset Sums
题面:P1466 集合 Subset Sums 题解: dpsum=N*(N+1)/2;模型转化为求选若干个数,填满sum/2的空间的方案数,就是背包啦显然如果sum%2!=0是没有答案的,就特判掉F ...
- 洛谷P1522 [USACO2.4]牛的旅行 Cow Tours
洛谷P1522 [USACO2.4]牛的旅行 Cow Tours 题意: 给出一些牧区的坐标,以及一个用邻接矩阵表示的牧区之间图.如果两个牧区之间有路存在那么这条路的长度就是两个牧区之间的欧几里得距离 ...
- 题解 洛谷P5018【对称二叉树】(noip2018T4)
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...
- 题解 洛谷P2158 【[SDOI2008]仪仗队】
本文搬自本人洛谷博客 题目 本文进行了一定的更新 优化了 Markdown 中 Latex 语句的运用,加强了可读性 补充了"我们仍不曾知晓得 消失的 性质5 ",加强了推导的严谨 ...
- 题解 洛谷 P3396 【哈希冲突】(根号分治)
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...
- 题解-洛谷P7114 字符串匹配
题面 洛谷P7114 字符串匹配 \(T\) 组测试数据.给定字符串 \(S\),问有多少不同的非空字符串 \(A\),\(B\),\(C\) 满足 \(S=ABABAB...ABC\) 且 \(A\ ...
- 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...
随机推荐
- HAVING,多表查询思路,可视化软件navicat,多表查询练习题,
HAVING "where"是一个约束声明,在查询数据库的结果返回之前对数据库中的查询条件进行约束,即在结果返回之 前起作用,且"where"后面不能写&quo ...
- VMware服务关闭后一定要重启
重要的事情说三遍:服务暂时关闭记得重启,服务暂时关闭记得重启,服务暂时关闭记得重启!!! VMware服务由于安装补丁的需要我暂时把服务关闭了,于是我遇到了尴尬的一幕,于是乎发现上不了网了,于是各种操 ...
- C++面向对象-类和对象那些你不知道的细节原理
一.类和对象.this指针 OOP语言的四大特征是什么? 抽象 封装.隐藏 继承 多态 类体内实现的方法会自动处理为inline函数. 类对象的内存大小之和成员变量有关 类在内存上需要对齐,是为了减轻 ...
- Spark在Local环境下的使用
① 将 spark-3.0.0-bin-hadoop3.2.tgz 文件上传到 Linux (cd /opt/module路径下)并解压缩 ② 修改spark-3.0.0-bin-hado ...
- [C++STL] vector 容器的入门
vector容器的入门 #include<vector> 创建vector容器的几种方式 数据类型可以是结构体,也能是另外一个容器 vector 的初始化: (1) 创建并声明大小 vec ...
- [2018-03-04] 利用 Settings Sync 插件同步 VS Code 设置
VS Code 已原生支持设置同步,本文仅备份记录 [2018-03-04] 早就听说这个插件了,今天用了一下,确实挺方便的.通过把配置文件创建为 Gist 上来实现了 VS Code 设置的同步,下 ...
- nvm安装与使用及乱码问题
前端开发工作中经常负责多个项目(新项目.多年的老项目及团队合作项目),经常会遇到npm install安装依赖包或者启动本地服务时依赖报错的情况,大多数是因为NodeJS和npm与依赖之间版本的问题, ...
- [react] 什么是虚拟dom?虚拟dom比操作原生dom要快吗?虚拟dom是如何转变成真实dom并渲染到页面的?
壹 ❀ 引 虚拟DOM(Virtual DOM)在前端领域也算是老生常谈的话题了,若你了解过vue或者react一定避不开这个话题,因此虚拟DOM也算是面试中常问的一个点,那么通过本文,你将了解到如下 ...
- Linux查看系统参数配置
Linux查看系统参数 1.查看内存(以GB为单位) [root@rac1 ~]# free -g total :内存总数,物理内存总数 used :已使用内存 free :空闲的内存数 shared ...
- Python参数传递中的 args, kwargs
概念 真正的Python参数传递语法是*和**,其被称为 被称为打包和解包参数.*args和**kwargs只是大家默认的一种形式.也可以写成*keys和**kkeys等其他形式.二者都是为了在不知道 ...