2023最新ELK日志平台(elasticsearch+logstash+kibana)搭建
前言
去年公司由于不断发展,内部自研系统越来越多,所以后来搭建了一个日志收集平台,并将日志收集功能以二方包形式引入自研系统,避免每个自研系统都要建立一套自己的日志模块,节约了开发时间,管理起来也更加容易。
这篇文章主要介绍ELK最新版本的搭建,二方包的介绍可以看小霸王的另外一篇文章。
ELK介绍
- Elasticsearch 是一个分布式、Restful 风格的搜索和数据分析引擎,能够解决不断涌现出的各种用例。作为 Elastic Stack 的核心,Elasticsearch 会集中存储您的数据,让您飞快完成搜索,并对数据进行强大的分析。
- Logstash 是免费且开放的服务器端数据处理管道,能够从多个来源采集数据,转换数据,然后将数据发送到数据库中。
- Kibana 是一个免费且开放的用户界面,能够让您对 Elasticsearch 数据进行可视化,从跟踪查询负载,到查看应用请求的整个过程,都能轻松完成。
搭建平台版本
| 平台 | 版本 |
|---|---|
| linux | centos stream 9 |
| java | openjdk 17 |
| elasticsearch | 8.6.2 |
| logstash | 8.6.2 |
| kibana | 8.6.2 |
| VMware Workstation Pro | 17 |
安装
首先在linux虚拟机上安装docker
先卸载旧版本
sudo yum remove docker docker-client docker-client-latest docker-common docker-latest docker-latest-logrotate docker-logrotate docker-engine
升级yum
yum update
设置仓库
yum install -y yum-utils device-mapper-persistent-data lvm2
使用阿里云镜像地址
yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
安装 Docker Engine-Community
sudo yum install docker-ce docker-ce-cli containerd.io
设置docker开机启动并启动docker
sudo systemctl enable docker
sudo systemctl start docker
至此,docker已安装完成,可以使用docker -v查看版本,接下来就要安装三大金刚了
docker pull elasticsearch:8.6.2
docker pull kibana:8.6.2
docker pull logstash:8.6.2
启动
elasticsearch
接着先挂载elasticsearch的配置文件,方便以后修改
首先创建elasticsearch.yml文件
cluster.name: "docker-cluster"
network.host: 0.0.0.0
discovery.seed_hosts: 0.0.0.0
network.bind_host: 0.0.0.0
http.port: 9200
# Enable security features
xpack.security.enabled: false
xpack.security.enrollment.enabled: false
# Enable encryption for HTTP API client connections, such as Kibana, Logstash, and Agents
xpack.security.http.ssl:
enabled: false
# Enable encryption and mutual authentication between cluster nodes
xpack.security.transport.ssl:
enabled: false
创建elasticsearch容器
docker run -d --name elasticsearch -p 9200:9200 -p 9300:9300 -v /home/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml -e "discovery.type=single-node" elasticsearch:8.6.2
启动elasticsearch容器
docker start elasticsearch
浏览器输入http://你的虚拟机ip:9200 显示如下,说明es启动成功
kibana
创建kibana容器,这里使用到汉化 "-e I18N_LOCALE=zh-CN"
docker run -d --name kibana --link elasticsearch:elasticsearch -e "I18N_LOCALE=zh-CN" -p 5601:5601 kibana:8.6.2
启动kibana
docker start kibana
输入http://你的虚拟机ip:5601/ 此时kibana启动成功
logstash
在linux的/home目录下新建logstash.yml文件,其中index是索引的名称,我们使用“xiaobawang-”前缀加时间来生成每天的索引。
# 输入端
input {
stdin { }
#为logstash增加tcp输入口,后面springboot接入会用到
tcp {
mode => "server"
host => "0.0.0.0"
port => 5043
codec => json_lines
}
}
#输出端
output {
stdout {
codec => rubydebug
}
elasticsearch {
hosts => ["http://你的虚拟机ip地址:9200"]
# 输出至elasticsearch中的自定义index名称
index => "xiaobawang-%{+YYYY.MM.dd}"
}
}
然后启动logstash,这里配置文件做了映射,/home/logstash.yml映射到/usr/share/logstash/pipeline/logstash.yml
docker run -d --name logstash -p 5043:5043 -p 5044:5044 --privileged=true -v /home/logstash.yml:/usr/share/logstash/pipeline/logstash.yml logstash:8.6.2
进入logstash容器
docker exec -it logstash /bin/bash
安装json_lines所需的插件
/usr/share/logstash/bin/logstash-plugin install logstash-codec-json_lines
重启logstash,至此elk已全部安装完成了。
docker restart logstash
Springboot整合logstash
下面使用logstash来将日志发送到elasticsearch,这里以springboot为例。
新建一个springboot项目,引入如下包:
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
</dependency>
<dependency>
<groupId>net.logstash.logback</groupId>
<artifactId>logstash-logback-encoder</artifactId>
<version>7.3</version>
</dependency>
在resources文件夹下,创建logback.xml
<?xml version="1.0" encoding="UTF-8"?>
<configuration debug="false">
<!--获取springboot的yml配置信息-->
<springProperty scope="context" name="applicationName" source="spring.application.name" defaultValue="default"/>
<!--定义日志文件的存储地址 勿在 LogBack 的配置中使用相对路径-->
<property name="LOG_HOME" value="/home"/>
<!--输出到控制台-->
<appender name="console" class="ch.qos.logback.core.ConsoleAppender">
<filter class="ch.qos.logback.classic.filter.ThresholdFilter">
<level>INFO</level>
</filter>
<withJansi>false</withJansi>
<encoder>
<!--<pattern>%d %p (%file:%line)- %m%n</pattern>-->
<!--格式化输出:%d:表示日期 %thread:表示线程名 %-5level:级别从左显示5个字符宽度 %msg:日志消息 %n:是换行符-->
<pattern>%d{yyyy-MM-dd HH:mm:ss} %highlight(%-5level) -- %boldMagenta([%thread]) %boldCyan(%logger) : %msg%n</pattern>
<charset>UTF-8</charset>
</encoder>
</appender>
<!-- 日志发送至logstash -->
<appender name="logstash" class="net.logstash.logback.appender.LogstashTcpSocketAppender">
<!-- logstash的服务器地址和通信端口 -->
<destination>你的虚拟机IP地址:5043</destination>
<!-- encoder is required -->
<encoder class="net.logstash.logback.encoder.LogstashEncoder">
<!-- 在elasticsearch的index中追加applicationName字段 -->
<customFields>{"applicationName":"${applicationName}"}</customFields>
</encoder>
</appender>
<!-- 按照每天生成日志文件 -->
<appender name="FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<!--日志文件输出的文件名-->
<FileNamePattern>${LOG_HOME}/TestWeb.log.%d{yyyy-MM-dd}.log</FileNamePattern>
<!--日志文件保留天数-->
<MaxHistory>30</MaxHistory>
</rollingPolicy>
<encoder class="ch.qos.logback.classic.encoder.PatternLayoutEncoder">
<!--格式化输出:%d表示日期,%thread表示线程名,%-5level:级别从左显示5个字符宽度%msg:日志消息,%n是换行符-->
<pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>
</encoder>
<!--日志文件最大的大小-->
<triggeringPolicy class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">
<MaxFileSize>10MB</MaxFileSize>
</triggeringPolicy>
</appender>
<!-- 日志输出级别 -->
<root level="INFO">
<appender-ref ref="logstash"/>
<appender-ref ref="console"/>
</root>
</configuration>
新建一个controller请求
@RestController
public class TestController {
private final static Logger logger= LoggerFactory.getLogger(TestController.class);
@RequestMapping("/myTest")
public void test(){
logger.info("日志开始"+System.currentTimeMillis());
logger.info("日志结束"+System.currentTimeMillis());
}
}
访问完请求后,进入Stack Management找到索引管理
可以看到springboot的3月4号日志已经生成,下面进一步查看日志的内容。
点击左侧菜单,选择Discover,创建数据视图,因为索引名称前缀是xiaobawang-,所以索引模式填写xiaobawang-*
就可以匹配每天生成的日志。
至此,ELK已经搭建完成,但kibana的功能远远不限于此,还可以查看不同维度的数据视图报表,有兴趣的童鞋可以研究研究。觉得有用的话,一键三连~
2023最新ELK日志平台(elasticsearch+logstash+kibana)搭建的更多相关文章
- 键盘侠Linux干货| ELK(Elasticsearch + Logstash + Kibana) 搭建教程
前言 Elasticsearch + Logstash + Kibana(ELK)是一套开源的日志管理方案,分析网站的访问情况时我们一般会借助 Google / 百度 / CNZZ 等方式嵌入 JS ...
- 用ElasticSearch,LogStash,Kibana搭建实时日志收集系统
用ElasticSearch,LogStash,Kibana搭建实时日志收集系统 介绍 这套系统,logstash负责收集处理日志文件内容存储到elasticsearch搜索引擎数据库中.kibana ...
- Elasticsearch + Logstash + Kibana 搭建教程
# ELK:Elasticsearch + Logstash + Kibana 搭建教程 Shipper:日志收集者.负责监控本地日志文件的变化,及时把日志文件的最新内容收集起来,输出到Redis暂存 ...
- 【转】ELK(ElasticSearch, Logstash, Kibana)搭建实时日志分析平台
[转自]https://my.oschina.net/itblog/blog/547250 摘要: 前段时间研究的Log4j+Kafka中,有人建议把Kafka收集到的日志存放于ES(ElasticS ...
- 【Big Data - ELK】ELK(ElasticSearch, Logstash, Kibana)搭建实时日志分析平台
摘要: 前段时间研究的Log4j+Kafka中,有人建议把Kafka收集到的日志存放于ES(ElasticSearch,一款基于Apache Lucene的开源分布式搜索引擎)中便于查找和分析,在研究 ...
- ELK(ElasticSearch+Logstash+ Kibana)搭建实时日志分析平台
一.简介 ELK 由三部分组成elasticsearch.logstash.kibana,elasticsearch是一个近似实时的搜索平台,它让你以前所未有的速度处理大数据成为可能. Elastic ...
- 使用ELK(Elasticsearch + Logstash + Kibana) 搭建日志集中分析平台实践--转载
原文地址:https://wsgzao.github.io/post/elk/ 另外可以参考:https://www.digitalocean.com/community/tutorials/how- ...
- ELK6.0部署:Elasticsearch+Logstash+Kibana搭建分布式日志平台
一.前言 1.ELK简介 ELK是Elasticsearch+Logstash+Kibana的简称 ElasticSearch是一个基于Lucene的分布式全文搜索引擎,提供 RESTful API进 ...
- Elasticsearch+Logstash+Kibana搭建分布式日志平台
一.前言 编译安装 1.ELK简介 下载相关安装包地址:https://www.elastic.co/cn/downloads ELK是Elasticsearch+Logstash+Kibana的简称 ...
- Elasticsearch+Logstash+Kibana搭建日志平台
1 ELK简介 ELK是Elasticsearch+Logstash+Kibana的简称 ElasticSearch是一个基于Lucene的分布式全文搜索引擎,提供 RESTful API进行数据读写 ...
随机推荐
- Java面向对象编程:多态(自我理解)
多态 (1)概念:同一个行为具有多个不同表现形式或形态的能力:就是同一个接口,使用不同的实例而执行不同的操作. (2)优点:消除类型之间的耦合关系:可替换性:可扩充性:接口性:灵活性:简化性: (3) ...
- zabbix监控mysql数据库——qps和tps
首先可以继续顺着zabbix监控mysql继续往下做 1.首先在42的继续编写qps和tps 1.1qps 在41服务端查询: 1.2 tps 2.在web进行查看
- git-开发常用命令
1.本地克隆代码 git clone http地址 2.查看所有分支 git branch -a remotes/origin开头 :远程分支 3.切换分支 git checkout 分支名 4.删除 ...
- a标签做锚点定位,有部分内容被置顶头部遮挡的解决方法
被遮挡的元素添加如下样式: /**这里假定头部高度是100px*/ position: relative;top: 100px;/**关键样式如下,我这里上面有加定位,如果没用定位,下面的数值需根据实 ...
- python3 文件上传
1 # 文件上传方法 2 def upload_files(filepath, url, headers, data): 3 filename = filepath.split('\\')[-1] 4 ...
- Markdown基础使用学习
Mark Down学习 标题:#+标题名字 二级标题:## +标题名字 三级... 字体 两个*+字+两个=加粗 一个=斜体 引用 一个大于号+内容 图片  符号全部小写 超链接 ...
- C#发送字符串转字节含空格与0x需删去
主要作用:清除发送字符串转字节中的空格和16进制前缀0x, 字节转换按两位字符转换为一个字节,多余一位按一位字符转换一个字节 //清除空格和16进制前缀发送 String sendstr;// = n ...
- 设计模式 - 单例模式 Singleton Pattern - C#
单例模式 Singleton Pattern 1.单例模式设计模式属于创建型模式 2.是单一的类,该类负责创建自己的对象,同时确保只有单个对象被创建.这个类提供了一种访问其唯一的对象的方式,可以直接访 ...
- Docker安装(win10)
Docker安装 windows 首先开启Hyper-V Hyper-V 是微软开发的虚拟机,类似于 VMWare 或 VirtualBox,仅适用于 Windows 10.这是 Docker Des ...
- RKO组——冲刺随笔(1)
这个作业属于哪个课程 至诚软工实践F班 这个作业要求在哪里 第五次团队作业:项目冲刺 这个作业的目标 记录冲刺计划.要求包括当天会议照片.会议内容以及项目燃尽图(项目进度) 1.昨日进展 小组成员讨论 ...