P1073 [NOIP2009 提高组] 最优贸易 (最短路spfa)
本题就是在一条1-n的路径上找p,q(先经过p),使得q-p最大。
考虑建正反图,正图上求出d[x],表示1-x的路径经过的节点最小值,反图上则从n开始求出f[x],x-n的最大值,最后枚举断点i,取最大的f[i]-d[i]就是答案。
基于动态规划的思想。
1 #include<bits/stdc++.h>
2 using namespace std;
3 const int N=1e5+10,M=1e6+10;
4 int head[N],to[M],nxt[M],edge[M],tot;
5 int n,m,a[N],d[N],f[N];
6 bool v[N];
7 queue<int> q;
8
9 void add(int x,int y,int z){
10 nxt[++tot]=head[x];
11 head[x]=tot;
12 to[tot]=y;
13 edge[tot]=z;//1只能正着走,-1只能倒着走,2正反都可以
14 }
15
16 void spfa(int *d,int st,int z){
17 d[st]=a[st];
18 q.push(st);v[st]=true;
19 while(!q.empty()){
20 int x=q.front();
21 q.pop();v[x]=false;
22 for(int i=head[x];i;i=nxt[i]){
23 if(edge[i]==z||edge[i]==2){
24 int y=to[i];
25 int val=z==1?min(d[x],a[y]):max(d[x],a[y]);
26 if(z==1&&d[y]>val||z==-1&&d[y]<val){
27 d[y]=val;//更新
28 if(!v[y]) {q.push(y);v[y]=true;}
29 }
30 }
31 }
32 }
33 }
34
35 int main(){
36 scanf("%d%d",&n,&m);
37 for(int i=1;i<=n;i++) scanf("%d",&a[i]);
38 for(int i=1;i<=m;i++){
39 int x,y,z;
40 scanf("%d%d%d",&x,&y,&z);
41 add(x,y,z);
42 add(y,x,z==1?-1:z);
43 }
44 memset(d,0x3f,sizeof(d));
45 spfa(d,1,1); // 从1出发求前缀min(d),只有1和2的边可以用
46 memset(f,0xcf/*负无穷*/,sizeof(f));
47 spfa(f,n,-1);// 从n出发倒着求后缀max(d),只有-1和2的边可以用
48 int ans=0;
49 for(int i=1;i<=n;i++) ans=max(ans,f[i]-d[i]);
50 printf("%d\n",ans);
51 }
P1073 [NOIP2009 提高组] 最优贸易 (最短路spfa)的更多相关文章
- [NOIP2009提高组]最优贸易
题目:洛谷P1073.Vijos P1754.codevs1173. 题目大意:有n点m边的图,边分有向和无向.每个点有一个价格,用这个价格可以买入或卖出一个东西.一个人从1出发,要到n,途中可以买入 ...
- 洛谷 P1073 最优贸易 最短路+SPFA算法
目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 题面 题目链接 P1073 最优贸易 题目描述 C国有 $ n $ 个大城市和 ...
- 洛谷 P1073 最优贸易 & [NOIP2009提高组](反向最短路)
传送门 解题思路 很长的题,实际上在一个有向图(点有点权)中求一个从起点1到终点n的路径,使得这条路径上点权最大的点与点权最小的点的差值最大(要求必须从点权较小的点能够走到点权较大的点). ——最短路 ...
- [NOIP2009] 提高组 洛谷P1073 最优贸易
题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路 ...
- Luogu P1073 最优贸易(最短路)
P1073 最优贸易 题意 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有 ...
- Noip2009提高组总结
Noip2009的题目还是有一定难度的,主要是搜索和最短路都是我的弱项,不检查第一遍下来只做了150分,还是这句话,素质和读题的仔细程度决定了分数.仔细想想,我们化学老师说的话没错,或许题目你都会做, ...
- noip2009提高组解题报告
NOIP2009潜伏者 题目描述 R 国和S 国正陷入战火之中,双方都互派间谍,潜入对方内部,伺机行动. 历尽艰险后,潜伏于 S 国的R 国间谍小C 终于摸清了S 国军用密码的编码规则: 1. S 国 ...
- noip2009提高组题解
NOIP2009题解 T1:潜伏者 题目大意:给出一段密文和破译后的明文,一个字母对应一个密文字母,要求破译一段密文,如果有矛盾或有未出现密文无法破译输出failed,否则输出明文. 思路:纯模拟题 ...
- [NOIP2009] 提高组 洛谷P1071 潜伏者
题目描述 R 国和 S 国正陷入战火之中,双方都互派间谍,潜入对方内部,伺机行动.历尽艰险后,潜伏于 S 国的 R 国间谍小 C 终于摸清了 S 国军用密码的编码规则: 1. S 国军方内部欲发送的原 ...
随机推荐
- CF1656D K-good
题意: 给定一个整数 \(n\),请找出一个大于等于 \(2\) 的整数 \(k\),使得 \(n\) 可以表示成 \(k\) 个除以 \(k\) 的余数互不相同的数之和. 注意\(k\)个除以 \( ...
- File类创建删除功能的方法和File类遍历目录功能
File类创建删除功能的方法 public boolean createNewFile();当且仅当具有该名称的文件尚不存在的时候,创建一个新的空文件 public boolean delete(); ...
- 零基础学Java(13)方法参数
前言 首先回顾一下在程序设计语言中关于如何将参数传递给方法的一些专业术语.按值调用表示方法接收的是调用者提供的值.而按引调用表示方法接收的是调用者提供的变量地址.方法可以修改按引用传递的变量的值,而不 ...
- linux学习随笔
date +%Y-%m-%d\ %H:%M:%S cal 10 2009 yum install bc //计算器 bc 安装thefuck yum install gcc gcc++ python ...
- 云原生Devops 的实现方法
DevOps 是一个持续改善软件产品的过程,它通过极短的发布周期.全面自动化的集成和交付流水线,以及团队间的紧密协作来不断改善产品.DevOps 的目标是缩短将创意变成用户可以使用的产品的时间,并降低 ...
- Linux 05 口令字文件
参考源 https://www.bilibili.com/video/BV187411y7hF?spm_id_from=333.999.0.0 版本 本文章基于 CentOS 7.6 概述 由于 /e ...
- [CF1536F] Omkar and Akmar(博弈论?组合数学)
题面 [CF1536F] Omkar and Akmar 甲乙轮流在一个有 N N N 个位置的环上放字母(环上每个位置不同),每次可以放一个 A 或 B ,要求不能有相同的字母相邻,轮到某个人时不能 ...
- HandInDevil 的头发 (分 块)
题面 H a n d I n D e v i l \rm HandInDevil HandInDevil 的头发很油,因此随时有跳蚤跳上 H a n d I n D e v i l \rm HandI ...
- mysql 重复执行创建表、新增字段脚本
#bigint 可重复执行创建表脚本 1 Create Table If Not Exists `库名`.`表名`( 2 字段列表 3 ) ENGINE=InnoDB DEFAULT CHARSET= ...
- HBase集群部署与基础命令
HBase 集群部署 安装 hbase 之前需要先搭建好 hadoop 集群和 zookeeper 集群.hadoop 集群搭建可以参考:https://www.cnblogs.com/javammc ...