本题就是在一条1-n的路径上找p,q(先经过p),使得q-p最大。

考虑建正反图,正图上求出d[x],表示1-x的路径经过的节点最小值,反图上则从n开始求出f[x],x-n的最大值,最后枚举断点i,取最大的f[i]-d[i]就是答案。

基于动态规划的思想。

 1 #include<bits/stdc++.h>
2 using namespace std;
3 const int N=1e5+10,M=1e6+10;
4 int head[N],to[M],nxt[M],edge[M],tot;
5 int n,m,a[N],d[N],f[N];
6 bool v[N];
7 queue<int> q;
8
9 void add(int x,int y,int z){
10 nxt[++tot]=head[x];
11 head[x]=tot;
12 to[tot]=y;
13 edge[tot]=z;//1只能正着走,-1只能倒着走,2正反都可以
14 }
15
16 void spfa(int *d,int st,int z){
17 d[st]=a[st];
18 q.push(st);v[st]=true;
19 while(!q.empty()){
20 int x=q.front();
21 q.pop();v[x]=false;
22 for(int i=head[x];i;i=nxt[i]){
23 if(edge[i]==z||edge[i]==2){
24 int y=to[i];
25 int val=z==1?min(d[x],a[y]):max(d[x],a[y]);
26 if(z==1&&d[y]>val||z==-1&&d[y]<val){
27 d[y]=val;//更新
28 if(!v[y]) {q.push(y);v[y]=true;}
29 }
30 }
31 }
32 }
33 }
34
35 int main(){
36 scanf("%d%d",&n,&m);
37 for(int i=1;i<=n;i++) scanf("%d",&a[i]);
38 for(int i=1;i<=m;i++){
39 int x,y,z;
40 scanf("%d%d%d",&x,&y,&z);
41 add(x,y,z);
42 add(y,x,z==1?-1:z);
43 }
44 memset(d,0x3f,sizeof(d));
45 spfa(d,1,1); // 从1出发求前缀min(d),只有1和2的边可以用
46 memset(f,0xcf/*负无穷*/,sizeof(f));
47 spfa(f,n,-1);// 从n出发倒着求后缀max(d),只有-1和2的边可以用
48 int ans=0;
49 for(int i=1;i<=n;i++) ans=max(ans,f[i]-d[i]);
50 printf("%d\n",ans);
51 }

P1073 [NOIP2009 提高组] 最优贸易 (最短路spfa)的更多相关文章

  1. [NOIP2009提高组]最优贸易

    题目:洛谷P1073.Vijos P1754.codevs1173. 题目大意:有n点m边的图,边分有向和无向.每个点有一个价格,用这个价格可以买入或卖出一个东西.一个人从1出发,要到n,途中可以买入 ...

  2. 洛谷 P1073 最优贸易 最短路+SPFA算法

    目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 题面 题目链接 P1073 最优贸易 题目描述 C国有 $ n $ 个大城市和 ...

  3. 洛谷 P1073 最优贸易 & [NOIP2009提高组](反向最短路)

    传送门 解题思路 很长的题,实际上在一个有向图(点有点权)中求一个从起点1到终点n的路径,使得这条路径上点权最大的点与点权最小的点的差值最大(要求必须从点权较小的点能够走到点权较大的点). ——最短路 ...

  4. [NOIP2009] 提高组 洛谷P1073 最优贸易

    题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路 ...

  5. Luogu P1073 最优贸易(最短路)

    P1073 最优贸易 题意 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有 ...

  6. Noip2009提高组总结

    Noip2009的题目还是有一定难度的,主要是搜索和最短路都是我的弱项,不检查第一遍下来只做了150分,还是这句话,素质和读题的仔细程度决定了分数.仔细想想,我们化学老师说的话没错,或许题目你都会做, ...

  7. noip2009提高组解题报告

    NOIP2009潜伏者 题目描述 R 国和S 国正陷入战火之中,双方都互派间谍,潜入对方内部,伺机行动. 历尽艰险后,潜伏于 S 国的R 国间谍小C 终于摸清了S 国军用密码的编码规则: 1. S 国 ...

  8. noip2009提高组题解

    NOIP2009题解 T1:潜伏者 题目大意:给出一段密文和破译后的明文,一个字母对应一个密文字母,要求破译一段密文,如果有矛盾或有未出现密文无法破译输出failed,否则输出明文. 思路:纯模拟题 ...

  9. [NOIP2009] 提高组 洛谷P1071 潜伏者

    题目描述 R 国和 S 国正陷入战火之中,双方都互派间谍,潜入对方内部,伺机行动.历尽艰险后,潜伏于 S 国的 R 国间谍小 C 终于摸清了 S 国军用密码的编码规则: 1. S 国军方内部欲发送的原 ...

随机推荐

  1. js入门基础

    JavaScript语言介绍 JavaScript的历史 诞生于1995年,最初名字叫做Mocha,1995年9月改为LiveScript.Netscape公司与Sun公司(Java语言的发明者)达成 ...

  2. 大数据平台迁移实践 | Apache DolphinScheduler 在当贝大数据环境中的应用

    大家下午好,我是来自当贝网络科技大数据平台的基础开发工程师 王昱翔,感谢社区的邀请来参与这次分享,关于 Apache DolphinScheduler 在当贝网络科技大数据环境中的应用. 本次演讲主要 ...

  3. Apache DolphinScheduler 使用文档(8/8):附录

    本文章经授权转载,原文链接: https://blog.csdn.net/MiaoSO/article/details/104770720 目录 附录.队列管理 附录.令牌管理 附录.队列管理 Q : ...

  4. (一)esp32开发环境搭建(VSCode+IDF实现单步调试)

    保姆级手把手教学视频 https://www.bilibili.com/video/BV1RL411A7CU 前言 因为碰上一个学长,跟他聊了会儿天,推荐我做一点物联网的项目,想来想去,那就用WiFi ...

  5. [跨数据库、微服务] FreeSql 分布式事务 TCC/Saga 编排重要性

    前言 FreeSql 支持 MySql/SqlServer/PostgreSQL/Oracle/Sqlite/Firebird/达梦/Gbase/神通/人大金仓/翰高/Clickhouse/MsAcc ...

  6. 大数据Hadoop入门教程 | (二)Linux

    使用finalShell可以提供文件目录图形化 完整Linux命令整理参考大佬博客:Linux常见文件管理命令 - Mr_Walker - 博客园 Linux文件系统基础知识 Linux文件系统概念 ...

  7. Hadoop的由来、Block切分、进程详解

    Hadoop的由来.Block切分.进程详解 一.hadoop的由来 Google发布了三篇论文: GFS(Google File System) MapReduce(数据计算方法) BigTable ...

  8. LOJ#2014「SCOI2016」萌萌哒(倍增,并查集优化连边)

    题面 点此看题 题意很明白,就不转述了吧. 题解 题目相当于告诉了我们若干等量关系,每个限制 l 1 , r 1 , l 2 , r 2 \tt l_1,r_1,l_2,r_2 l1​,r1​,l2​ ...

  9. 【JAVA】学习路径35-InputStream使用例子

    import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.IOException; pu ...

  10. k8s命令补全方法

    正常安装了k8s后,使用kubect 工具后接的命令不能直接tab补全 命令补全方法: yum -y install bash-completionsource /usr/share/bash-com ...