SG函数和SG定理(Sprague_Grundy)
一、必胜点和必败点的概念
P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败。
N点:必胜点,处于此情况下,双方操作均正确的情况下必胜。
必胜点和必败点的性质:
1、所有终结点是 必败点 P 。(我们以此为基本前提进行推理,换句话说,我们以此为假设)
2、从任何必胜点N 操作,至少有一种方式可以进入必败点 P。
3、无论如何操作,必败点P 都只能进入 必胜点 N。
我们研究必胜点和必败点的目的时间为题进行简化,有助于我们的分析。通常我们分析必胜点和必败点都是以终结点进行逆序分析。我们以hdu 1847 Good Luck in CET-4 Everybody!为例:
当 n = 0 时,显然为必败点,因为此时你已经无法进行操作了
当 n = 1 时,因为你一次就可以拿完所有牌,故此时为必胜点
当 n = 2 时,也是一次就可以拿完,故此时为必胜点
当 n = 3 时,要么就是剩一张要么剩两张,无论怎么取对方都将面对必胜点,故这一点为必败点。
以此类推,最后你就可以得到;
n : 0 1 2 3 4 5 6 ...
position: P N N P N N P ...
你发现了什么没有,对,他们就是成有规律,使用了 P/N来分析,有没有觉得问题变简单了。
二、Sprague-Grundy定理(SG定理)
游戏和的SG函数等于各个游戏SG函数的Nim和。这样就可以将每一个子游戏分而治之,从而简化了问题。而Bouton定理就是Sprague-Grundy定理在Nim游戏中的直接应用,因为单堆的Nim游戏 SG函数满足 SG(x) = x。
(NIM游戏:https://blog.csdn.net/luomingjun12315/article/details/45479073)
三、Sprague-Grundy函数(SG函数)
首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。
对于任意状态 x , 定义 SG(x) = mex(S),其中 S 是 x 后继状态的SG函数值的集合。如 x 有三个后继状态分别为 SG(a),SG(b),SG(c),那么SG(x) = mex{SG(a),SG(b),SG(c)}。 这样 集合S 的终态必然是空集,所以SG函数的终态为 SG(x) = 0,当且仅当 x 为必败点P时。
四、例题
http://poj.org/problem?id=2975
http://poj.org/problem?id=2960
https://ac.nowcoder.com/acm/contest/338/I
五、参考文章
https://blog.csdn.net/luomingjun12315/article/details/45555495
https://www.cnblogs.com/ECJTUACM-873284962/p/6921829.html
https://blog.csdn.net/kamisama123/article/details/77649118
SG函数和SG定理(Sprague_Grundy)的更多相关文章
- SG函数和SG定理【详解】
在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念: P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点 ...
- (转载)--SG函数和SG定理【详解】
在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念: P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点 ...
- 组合游戏 - SG函数和SG定理
在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念: P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点 ...
- SG函数和SG定理
Fibonacci again and again 利用SG函数求出每一堆的SG值,如果三个值的异或和为零 先手必败态,否则,先手必胜态. #include <bits/stdc++.h> ...
- SG函数&&SG定理
必胜点和必败点的概念: P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败. N点:必胜点,处于此情况下,双方操作均正确的情况下必胜. 必胜点和必败点的 ...
- SG定理与SG函数
一个蒟蒻来口胡$SG$函数与$SG$定理. 要是发现有不对之处望指教. 首先我们来了解一下$Nim$游戏. $Nim$游戏是公平组合游戏的一种,意思是当前可行操作仅依赖于当前局势. 而经典$Nim$游 ...
- SG函数 专题练习
[hdu1536][poj2960]S-Nim 题意 题意就是给出一个数组h,为每次可以取石子的数目. 然后给你n堆石子每堆si.求解先手能不能赢? 分析 根据\(h\)数组预处理出\(sg[i]\) ...
- 博弈论进阶之SG函数
SG函数 个人理解:SG函数是人们在研究博弈论的道路上迈出的重要一步,它把许多杂乱无章的博弈游戏通过某种规则结合在了一起,使得一类普遍的博弈问题得到了解决. 从SG函数开始,我们不再是单纯的同过找规律 ...
- Wannafly挑战赛23 T2游戏 SG函数
哎,被卡科技了,想了三个小时,最后还是大佬给我说是\(SG\)函数. \(SG\)函数,用起来很简单,证明呢?(不可能的,这辈子都是不可能的) \(SG\)定理 游戏的\(SG\)函数就是各个子游戏的 ...
随机推荐
- 0.spring cloud目录
1. 微服务架构概述 1.0. 单体架构是什么 1.1. 单体应用架构存在的问题 1.2. 如何解决单体应用架构存在的问题 1.3. 什么是微服务 1.4. 微服务架构的优点与挑战 1.4.1. 微服 ...
- Maximum upload size exceede上传文件大小超出解决
在这里记录三种方法, 努力提高自己的姿势水平 application.yml配置 spring: servlet: multipart: enabled: true max-file-size: 10 ...
- PHP AJAX返回 "TEXT"
例子:通过AJAX间接访问数据库,查出Nation表显示在页面上,并添加删除按钮 //首先在外层添加一个按钮,并造好表头 <div><input type="button& ...
- python正则表达式解析(re)
正则表达式的使用方法主要有4种: re.search(进行正则匹配), re.match(从头开始匹配) re.findall(找出所有符合条件的字符列表) re.split(根据条件进行切分) ...
- ubuntu下编译linux内核之前需要做哪些准备?
答: 安装必要的工具(笔者使用的ubuntu代号为bionic) sudo apt-get install -y bison flex
- LC 759. Employee Free Time 【lock, hard】
We are given a list schedule of employees, which represents the working time for each employee. Each ...
- 【例3】设有关系模式R(A, B, C, D, E)与它的函数依赖集F={A→BC, CD→E, B→D, E→A},求R的所有候选键。 解题思路:
通过分析F发现,其所有的属性A.B.C.D.E都是LR类属性,没有L类.R类.N类属性. 因此,先从这些属性中依次取出一个属性,分别求它们的闭包:=ABCDE,=BD,=C,=D, =ABCDE.由于 ...
- SOA简介
1.你可以把SOA理解为一种概念,总的来说就是面向服务的设计. 这个概念简单来理解就是把之前所谓的模块划分做成服务. 比如之前的日志模块,需要引用你的dll,调用你的写日志方法来写日志.这样当有多个系 ...
- Python之异常处理合集
PermissionError: [Errno 13] Permission denied open(filePath)中的filePath是一目录路径,而非目录路径 先前打开的file文件对象未被关 ...
- python配置主机名
.准备hosts模板 mkdir -p /k8s/profile cat >/k8s/profile/hosts<<EOF 192.168.0.91 test1 192.168.0. ...