一、必胜点和必败点的概念

P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败。
       N点:必胜点,处于此情况下,双方操作均正确的情况下必胜。

必胜点和必败点的性质:
        1、所有终结点是 必败点 P 。(我们以此为基本前提进行推理,换句话说,我们以此为假设)
        2、从任何必胜点N 操作,至少有一种方式可以进入必败点 P。
        3、无论如何操作,必败点P 都只能进入 必胜点 N。
我们研究必胜点和必败点的目的时间为题进行简化,有助于我们的分析。通常我们分析必胜点和必败点都是以终结点进行逆序分析。我们以hdu 1847 Good Luck in CET-4 Everybody!为例:
当 n = 0 时,显然为必败点,因为此时你已经无法进行操作了
当 n = 1 时,因为你一次就可以拿完所有牌,故此时为必胜点
当 n = 2 时,也是一次就可以拿完,故此时为必胜点
当 n = 3 时,要么就是剩一张要么剩两张,无论怎么取对方都将面对必胜点,故这一点为必败点。
以此类推,最后你就可以得到;
      n    :   0    1    2    3    4   5    6 ...
position:  P    N   N    P   N   N   P ...
你发现了什么没有,对,他们就是成有规律,使用了 P/N来分析,有没有觉得问题变简单了。

二、Sprague-Grundy定理(SG定理)
        游戏和的SG函数等于各个游戏SG函数的Nim和。这样就可以将每一个子游戏分而治之,从而简化了问题。而Bouton定理就是Sprague-Grundy定理在Nim游戏中的直接应用,因为单堆的Nim游戏 SG函数满足 SG(x) = x。

(NIM游戏:https://blog.csdn.net/luomingjun12315/article/details/45479073)

三、Sprague-Grundy函数(SG函数)
        首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。

对于任意状态 x , 定义 SG(x) = mex(S),其中 S 是 x 后继状态的SG函数值的集合。如 x 有三个后继状态分别为 SG(a),SG(b),SG(c),那么SG(x) = mex{SG(a),SG(b),SG(c)}。 这样 集合S 的终态必然是空集,所以SG函数的终态为 SG(x) = 0,当且仅当 x 为必败点P时。

四、例题
http://poj.org/problem?id=2975

http://poj.org/problem?id=2960

https://ac.nowcoder.com/acm/contest/338/I

五、参考文章
https://blog.csdn.net/luomingjun12315/article/details/45555495

https://www.cnblogs.com/ECJTUACM-873284962/p/6921829.html

https://blog.csdn.net/kamisama123/article/details/77649118

SG函数和SG定理(Sprague_Grundy)的更多相关文章

  1. SG函数和SG定理【详解】

    在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点 ...

  2. (转载)--SG函数和SG定理【详解】

    在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点 ...

  3. 组合游戏 - SG函数和SG定理

    在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点 ...

  4. SG函数和SG定理

    Fibonacci again and again 利用SG函数求出每一堆的SG值,如果三个值的异或和为零 先手必败态,否则,先手必胜态. #include <bits/stdc++.h> ...

  5. SG函数&&SG定理

    必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点,处于此情况下,双方操作均正确的情况下必胜. 必胜点和必败点的 ...

  6. SG定理与SG函数

    一个蒟蒻来口胡$SG$函数与$SG$定理. 要是发现有不对之处望指教. 首先我们来了解一下$Nim$游戏. $Nim$游戏是公平组合游戏的一种,意思是当前可行操作仅依赖于当前局势. 而经典$Nim$游 ...

  7. SG函数 专题练习

    [hdu1536][poj2960]S-Nim 题意 题意就是给出一个数组h,为每次可以取石子的数目. 然后给你n堆石子每堆si.求解先手能不能赢? 分析 根据\(h\)数组预处理出\(sg[i]\) ...

  8. 博弈论进阶之SG函数

    SG函数 个人理解:SG函数是人们在研究博弈论的道路上迈出的重要一步,它把许多杂乱无章的博弈游戏通过某种规则结合在了一起,使得一类普遍的博弈问题得到了解决. 从SG函数开始,我们不再是单纯的同过找规律 ...

  9. Wannafly挑战赛23 T2游戏 SG函数

    哎,被卡科技了,想了三个小时,最后还是大佬给我说是\(SG\)函数. \(SG\)函数,用起来很简单,证明呢?(不可能的,这辈子都是不可能的) \(SG\)定理 游戏的\(SG\)函数就是各个子游戏的 ...

随机推荐

  1. 0.spring cloud目录

    1. 微服务架构概述 1.0. 单体架构是什么 1.1. 单体应用架构存在的问题 1.2. 如何解决单体应用架构存在的问题 1.3. 什么是微服务 1.4. 微服务架构的优点与挑战 1.4.1. 微服 ...

  2. Maximum upload size exceede上传文件大小超出解决

    在这里记录三种方法, 努力提高自己的姿势水平 application.yml配置 spring: servlet: multipart: enabled: true max-file-size: 10 ...

  3. PHP AJAX返回 "TEXT"

    例子:通过AJAX间接访问数据库,查出Nation表显示在页面上,并添加删除按钮 //首先在外层添加一个按钮,并造好表头 <div><input type="button& ...

  4. python正则表达式解析(re)

    正则表达式的使用方法主要有4种: re.search(进行正则匹配), re.match(从头开始匹配)  re.findall(找出所有符合条件的字符列表)  re.split(根据条件进行切分)  ...

  5. ubuntu下编译linux内核之前需要做哪些准备?

    答: 安装必要的工具(笔者使用的ubuntu代号为bionic) sudo apt-get install -y bison flex

  6. LC 759. Employee Free Time 【lock, hard】

    We are given a list schedule of employees, which represents the working time for each employee. Each ...

  7. 【例3】设有关系模式R(A, B, C, D, E)与它的函数依赖集F={A→BC, CD→E, B→D, E→A},求R的所有候选键。 解题思路:

    通过分析F发现,其所有的属性A.B.C.D.E都是LR类属性,没有L类.R类.N类属性. 因此,先从这些属性中依次取出一个属性,分别求它们的闭包:=ABCDE,=BD,=C,=D, =ABCDE.由于 ...

  8. SOA简介

    1.你可以把SOA理解为一种概念,总的来说就是面向服务的设计. 这个概念简单来理解就是把之前所谓的模块划分做成服务. 比如之前的日志模块,需要引用你的dll,调用你的写日志方法来写日志.这样当有多个系 ...

  9. Python之异常处理合集

    PermissionError: [Errno 13] Permission denied open(filePath)中的filePath是一目录路径,而非目录路径 先前打开的file文件对象未被关 ...

  10. python配置主机名

    .准备hosts模板 mkdir -p /k8s/profile cat >/k8s/profile/hosts<<EOF 192.168.0.91 test1 192.168.0. ...