https://www.cnblogs.com/peng-ym/p/8666124.html

#include<bits/stdc++.h>
#define LL long long
#define ULL unsigned long long
#define rep(i,j,k) for(int i=j;i<=k;i++)
#define dep(i,j,k) for(int i=k;i>=j;i--)
#define INF 0x3f3f3f3f
#define mem(i,j) memset(i,j,sizeof(i))
#define make(i,j) make_pair(i,j)
#define pb push_back
using namespace std;
const LL mod=;
const int N=1e7+;
int pre[N],tot,k;
LL mu[N];
bool vis[N];
void init() {
mu[]=;
rep(i,,N-) {
if(!vis[i]) { pre[++tot]=i; mu[i]=-; }
for(int j=;j<=tot&&pre[j]*i<=N-;j++) {
vis[i*pre[j]]=;
if(i%pre[j]==) break;
mu[i*pre[j]]=-mu[i];
}
}
rep(i,,N-) mu[i]=(mu[i-]+1LL*mu[i]*1LL*i%mod*1LL*i%mod)%mod;
}
int main() {
int n,m;
init();
scanf("%d %d",&n,&m);
LL ans=;
LL inv2=(mod+1LL)/2LL;
rep(d,,min(n,m)) {
int M=m/d; int N=n/d;
LL tmp=0LL;
for(int l=,r;l<=min(N,M);l=r+) {
r=min(N/(N/l),M/(M/l));
tmp=(tmp+((mu[r]-mu[l-])%mod*1LL*(1LL+N/l)%mod*1LL*(N/l)%mod*inv2%mod*(1LL+M/l)%mod*(M/l)%mod*inv2%mod)%mod)%mod;
}
ans=(ans+tmp*1LL*d%mod)%mod;
}
printf("%lld\n",(ans+mod)%mod);
return ;
}

Crash的数字表格 / JZPTAB的更多相关文章

  1. 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告

    [国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...

  2. [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)

    题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...

  3. 题解-[国家集训队]Crash的数字表格 / JZPTAB

    题解-[国家集训队]Crash的数字表格 / JZPTAB 前置知识: 莫比乌斯反演 </> [国家集训队]Crash的数字表格 / JZPTAB 单组测试数据,给定 \(n,m\) ,求 ...

  4. [luogu1829][bzoj2154][国家集训队]Crash的数字表格 / JZPTAB【莫比乌斯反演】

    传送门:洛谷,bzoj 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整 ...

  5. 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...

  6. 【题解】[国家集训队]Crash的数字表格 / JZPTAB

    求解\(\sum_{i = 1}^{n}\sum_{j = 1}^{m}lcm\left ( i,j \right )\). 有\(lcm\left ( i,j \right )=\frac{ij}{ ...

  7. P1829 [国家集训队]Crash的数字表格 / JZPTAB

    推式子太快乐啦!虽然我好蠢而且dummy和maomao好巨(划掉) 思路 莫比乌斯反演的题目 首先这题有\(O(\sqrt n)\)的做法但是我没写咕咕咕 然后就是爆推一波式子 \[ \sum_{i= ...

  8. 【[国家集训队]Crash的数字表格 / JZPTAB】

    这道题我们要求的是 \[\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)\] 总所周知\(lcm\)的性质不如\(gcd\)优雅,但是唯一分解定理告诉我们\(gcd(i,j)\time ...

  9. [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演

    ---题面--- 题解: $$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}{\frac{ij}{gcd(i, j)}}$$ 改成枚举d(设n < m) $$ans ...

  10. 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)

    传送门 式子好麻烦orz……大佬好腻害orz->这里 //minamoto #include<iostream> #include<cstdio> #define ll ...

随机推荐

  1. 使用canal获取mysql的binlog传输给kafka,并交由logstash获取实验步骤

    1. 实验环境 CPU:4 内存:8G ip:192.168.0.187 开启iptables防火墙 关闭selinux java >=1.5 使用yum方式安装的java,提前配置好JAVA_ ...

  2. idea中创建的go项目,添加project sdk时没有go sdk选项的解决方式

    同样是后端开发,年薪50万和年薪20万的差距在哪里>>> 更新: 为了防止你被我这个流水账气到,先看这个结论吧:这个问题的结局方法:忽略,没有什么影响. -------------- ...

  3. select in关键字查询匹配多个字段

    select id from table where (num,name) in ((num1,'name1'),(num2,'name2'))

  4. C语言快速判断素数——不超时

    这属于算法上的问题,好好考虑一下算法,还要考虑一下素数的定义. 素数是只有1和本身能整除的整数.所以在求素数的时候,要将素数与1到素数本身中间的所有整数都相除,看是否有整除的数,如果有,那肯定不是素数 ...

  5. Django多对多

    表名小写+_set()  得到的是一个QuertSet集合,她的后面可以跟 .add()   .remove()   .update()   .clear() models.py  文件 # 学生表 ...

  6. vue + echarts 实现中国地图 展示城市

    Demo 安装依赖 vue中安装echarts npm install echarts -S 在main.js中引用 import echarts from 'echarts'Vue.prototyp ...

  7. JDialog

    JDialog继承Dialog,Dialog继承Window,所以可以用setLocationRelativeTo(Component c)来实现Dialog的显示,当c为空时,直接显示在屏幕前,为组 ...

  8. iTop4412开发板+虚拟机+tftp服务

    感觉好坑啊 利用路由器+2根网线+tftp服务 首先是开发板,主机,虚拟机相互之间能ping通(坑), 关闭主机防火墙,防止被强 关闭虚拟机防火墙 虚拟机装上tftpd服务端(通过网上教程嘛) 是不是 ...

  9. SSISDB7:当前正在运行的Package及其Executable

    PM问:“Vic,现在ETL Job跑到哪一个Package了,正在执行哪个Task?”,第一次遇到这个问题时,一下就懵逼了,只能硬着头皮说:“我看看”. 在做项目开发时,这个问题很常见,但是,被很多 ...

  10. RobHess的SIFT代码解析步骤一

    平台:win10 x64 +VS 2015专业版 +opencv-2.4.11 + gtk_-bundle_2.24.10_win32 主要参考:1.代码:RobHess的SIFT源码:SIFT+KD ...