Crash的数字表格 / JZPTAB
https://www.cnblogs.com/peng-ym/p/8666124.html
#include<bits/stdc++.h>
#define LL long long
#define ULL unsigned long long
#define rep(i,j,k) for(int i=j;i<=k;i++)
#define dep(i,j,k) for(int i=k;i>=j;i--)
#define INF 0x3f3f3f3f
#define mem(i,j) memset(i,j,sizeof(i))
#define make(i,j) make_pair(i,j)
#define pb push_back
using namespace std;
const LL mod=;
const int N=1e7+;
int pre[N],tot,k;
LL mu[N];
bool vis[N];
void init() {
mu[]=;
rep(i,,N-) {
if(!vis[i]) { pre[++tot]=i; mu[i]=-; }
for(int j=;j<=tot&&pre[j]*i<=N-;j++) {
vis[i*pre[j]]=;
if(i%pre[j]==) break;
mu[i*pre[j]]=-mu[i];
}
}
rep(i,,N-) mu[i]=(mu[i-]+1LL*mu[i]*1LL*i%mod*1LL*i%mod)%mod;
}
int main() {
int n,m;
init();
scanf("%d %d",&n,&m);
LL ans=;
LL inv2=(mod+1LL)/2LL;
rep(d,,min(n,m)) {
int M=m/d; int N=n/d;
LL tmp=0LL;
for(int l=,r;l<=min(N,M);l=r+) {
r=min(N/(N/l),M/(M/l));
tmp=(tmp+((mu[r]-mu[l-])%mod*1LL*(1LL+N/l)%mod*1LL*(N/l)%mod*inv2%mod*(1LL+M/l)%mod*(M/l)%mod*inv2%mod)%mod)%mod;
}
ans=(ans+tmp*1LL*d%mod)%mod;
}
printf("%lld\n",(ans+mod)%mod);
return ;
}
Crash的数字表格 / JZPTAB的更多相关文章
- 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告
[国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...
- [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...
- 题解-[国家集训队]Crash的数字表格 / JZPTAB
题解-[国家集训队]Crash的数字表格 / JZPTAB 前置知识: 莫比乌斯反演 </> [国家集训队]Crash的数字表格 / JZPTAB 单组测试数据,给定 \(n,m\) ,求 ...
- [luogu1829][bzoj2154][国家集训队]Crash的数字表格 / JZPTAB【莫比乌斯反演】
传送门:洛谷,bzoj 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整 ...
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...
- 【题解】[国家集训队]Crash的数字表格 / JZPTAB
求解\(\sum_{i = 1}^{n}\sum_{j = 1}^{m}lcm\left ( i,j \right )\). 有\(lcm\left ( i,j \right )=\frac{ij}{ ...
- P1829 [国家集训队]Crash的数字表格 / JZPTAB
推式子太快乐啦!虽然我好蠢而且dummy和maomao好巨(划掉) 思路 莫比乌斯反演的题目 首先这题有\(O(\sqrt n)\)的做法但是我没写咕咕咕 然后就是爆推一波式子 \[ \sum_{i= ...
- 【[国家集训队]Crash的数字表格 / JZPTAB】
这道题我们要求的是 \[\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)\] 总所周知\(lcm\)的性质不如\(gcd\)优雅,但是唯一分解定理告诉我们\(gcd(i,j)\time ...
- [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演
---题面--- 题解: $$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}{\frac{ij}{gcd(i, j)}}$$ 改成枚举d(设n < m) $$ans ...
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
传送门 式子好麻烦orz……大佬好腻害orz->这里 //minamoto #include<iostream> #include<cstdio> #define ll ...
随机推荐
- 线段树维护动态连续子段HDU1540
题意:http://acm.hdu.edu.cn/showproblem.php?pid=1540 #define IOS ios_base::sync_with_stdio(0); cin.tie( ...
- kubernetes kubeadm安装v1.14
1.我们这里准备两台Centos7的主机用于安装,后续节点可以根究需要添加即可:master node01两台都得改:cat /etc/hosts192.168.71.134 master192.16 ...
- Java并发与多线程教程(3)
Java中的锁 锁像synchronized同步块一样,是一种线程同步机制,但比Java中的synchronized同步块更复杂.因为锁(以及其它更高级的线程同步机制)是由synchronized同步 ...
- Jmeter4.0---- 修改jmeter源代码(18)
1.说明 jmeter本身功能很强大,但是在使用的时候我们会发现有些想法jmeter无法帮我们实现,这个时候就需要我们细节去修改一下它的源代码,来满足我们的需求. * 仅供参考 2.步骤 第一步: j ...
- [NOIP2018模拟10.15]比赛报告
闲扯 昨晚又颓到好晚,Yali的降智光环感觉持续至今... 题面好评 T1T3都玩过 逃) T1没看多久就开始写二分+并查集 然后T3看着眼熟想了一个多小时...结果啥都没想出来 赶紧看T2发现还是没 ...
- ELECTRON 打包
安装electron-packager cnpm install electron-packager -g 配置package.json "scripts": { "st ...
- S5PV210 点亮Led
GPC1CON, R/W, Address = 0xE020_0080 GPC1DAT, R/W, Address = 0xE020_0084 举例 #define GPC1CON *((volati ...
- VC文件扩展名
.APS:存放二进制资源的中间文件,VC把当前资源文件转换成二进制格式,并存放在APS文件中,以加快资源装载速度. .BMP:位图资源文件. .BSC:浏览信息文件,由浏览信息维护工具(BSCMAKE ...
- Spring Cloud(七)服务网关 Zuul Filter 使用
上一篇文章中,讲了Zuul 转发,动态路由,负载均衡,等等一些Zuul 的特性,这个一篇文章,讲Zuul Filter 使用,关于网关的作用,这里就不再次赘述了,重点是zuul的Filter ,我们可 ...
- Cacti-0.8.8b详细安装及配置步骤
1. Cacti环境安装 1.1 安装LAMP环境 安装LAMP环境,当然,如果你有兴趣可以采用编译,我线上Mysql是编译的,其余是yum安装的.在这次实验采用yum安装. 关闭i ...