A Beginner's Guide To Understanding Convolutional Neural Networks Part One (CNN)笔记
原文链接:https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
借这篇文章进行卷积神经网络的初步理解(Convolutional Nerual Networks)
Image Classification
Image classification(图像分类) is the task of taking an input image and outputting a class(a dog, a cat, ect.) or a probablity of classes that best describes the image.
Inputs and Outputs
When a computer sees an image, it will see an array of pixel values, e.g. 32*32*3, RGB(red,green,blue) values.
/****补充****/
单通道图:俗称灰度图,每个像素点只能有一个值表示颜色,像素值在0-255之间(0是黑色,255是白色,中间值是一些不同等级的灰色)。
三通道图(RGB):每个像素点有三个值表示,对红、绿、蓝三个颜色的通道值变化以及它们之间的相互叠加来得到各种各样的颜色。三通道灰度图指的是三个通道的值相同。
Biological Connection
某些神经元只对特定方向的边缘做出响应,一些神经元只对垂直方向做出响应,一些只对水平方向等。这些神经元都在一个柱状组织里(人眼中的光感受器:柱状体,对事物有一个总体感知),是卷积神经网络的基础。
First Layer - Math Part(Convolutional Layer aka conv layer)

The filter(or a neuron神经元/kernel核) has an array of numbers,called weights or parameters. The filter is convolving, next step(stride) is moving to the right by 1 unit.
The depth of this filter has to be the same as the depth of the input, so the filter is 5*5*3. If we use two filters(5*5*3), the output would be 28*28*2.
First Layer - High Level Perspective
Each of these filters can be thought of as feature identifiers(straight edges, colors, curves ect.).
E.g. a curve detector

The filter will have a pixel structure in which there will be higher numerical values along the area that is a shape of a curve.

So we take this image as example.


(可见第一幅图匹配度高,第二幅匹配度低)
Going Deeper Through the Network
A classic CNN architecture would look like this:
Input -> Conv -> ReLU -> Conv -> ReLU -> Pool -> ReLU -> Conv -> ReLU -> Pool -> Fully Connected Layer
(ReLU:激活函数,Pool:池化层)
There're other layers that are interspersed(点缀,散布) between these conv layers, they provide nonlinearities (ReLU) and preservation(维度保护) of dimension(Pool) that help to improve the robustness(鲁棒性) of the network and control overfitting.
As you go through more and more conv layers,(i).you get activation maps that represent more and more complex features;(ii).the filters begin to have a larger and larger receptive field.
Fully Connected Layer(FC)
全连接层在整个网络中起到分类器的作用,可用卷积实现。
目前全连接由于参数冗余(仅全连接层参数就可占整个网络参数80%左右),近期有使用全局平均池化(global average pooling,GAP),通常有较好的预测性能。
A Beginner's Guide To Understanding Convolutional Neural Networks Part One (CNN)笔记的更多相关文章
- A Beginner's Guide To Understanding Convolutional Neural Networks(转)
A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...
- (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2
Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...
- (转)A Beginner's Guide To Understanding Convolutional Neural Networks
Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...
- [转] Understanding Convolutional Neural Networks for NLP
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 讲CNN以及其在NLP的应用,非常 ...
- Understanding Convolutional Neural Networks for NLP
When we hear about Convolutional Neural Network (CNNs), we typically think of Computer Vision. CNNs ...
- [转]An Intuitive Explanation of Convolutional Neural Networks
An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive ...
- An Intuitive Explanation of Convolutional Neural Networks
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ An Intuitive Explanation of Convolu ...
- 一目了然卷积神经网络 - An Intuitive Explanation of Convolutional Neural Networks
An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intu ...
- 卷积神经网络用于视觉识别Convolutional Neural Networks for Visual Recognition
Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalizat ...
随机推荐
- python WordCloud 实现词云
简单示例 from matplotlib import pyplot as plt from wordcloud import WordCloud filename = "text.txt& ...
- 分布式缓存Redis+Memcached经典面试题和答案
Redis相比memcached有哪些优势? (1) memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类型 (2) redis的速度比memcached快很多 ( ...
- Nginx作为静态资源web服务之跨域访问
Nginx作为静态资源web服务之跨域访问 首先了解一下什么是跨域 跨域,指的是浏览器不能执行其他网站的脚本.它是由浏览器的同源策略造成的,是浏览器施加的安全限制. 所谓同源是指,域名,协议,端口均相 ...
- 错误处理:java.lang.NoClassDefFoundError: javax/jms/JMSContext
原因是少包,需要在pom文件增加依赖 <dependency> <groupId>javax.jms</groupId> <artifactId>jav ...
- 110G离线维基百科数据免费拿
110G离线维基百科数据免费拿.. 资料获取方式,关注公总号RaoRao1994,查看往期精彩-所有文章,即可获取资源下载链接 更多资源获取,请关注公总号RaoRao1994
- EF 将MSSQL 更换成 POSTRESQL
前提概要:项目里已存在MSSQL 的 DB FIRST 的EDMX, 想将项目的数据库转换成 POSTGRESQL. 解决方法: 1,新建项目, 连接MSSQL 建立模型,用来源于数据库 CODE F ...
- 《python解释器源码剖析》第11章--python虚拟机中的控制流
11.0 序 在上一章中,我们剖析了python虚拟机中的一般表达式的实现.在剖析一遍表达式是我们的流程都是从上往下顺序执行的,在执行的过程中没有任何变化.但是显然这是不够的,因为怎么能没有流程控制呢 ...
- BLE各版本新功能总结
文章转载自:http://www.sunyouqun.com/2017/04/ 协议发布时间 协议版本 2016/12 Bluetooth 5 2014/12 Bluetooth 4.2 2013/1 ...
- 使用browsercookie来管理浏览器cookies
处理cookie是很繁琐的一件事情,稍微有一点处理不对的话,就不能访问网站,最好的办法就是能操作浏览器cookie,这样是最真实的,在Python中有一个第三方库: browsercookie就是来解 ...
- 启动Activity的单独事件方法2
1.Button中创建android:onClick="sendmessage" sendmessage方法名 //MAIN_acitivity创建这个同名独立方法 响应Butto ...