A Beginner's Guide To Understanding Convolutional Neural Networks Part One (CNN)笔记
原文链接:https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
借这篇文章进行卷积神经网络的初步理解(Convolutional Nerual Networks)
Image Classification
Image classification(图像分类) is the task of taking an input image and outputting a class(a dog, a cat, ect.) or a probablity of classes that best describes the image.
Inputs and Outputs
When a computer sees an image, it will see an array of pixel values, e.g. 32*32*3, RGB(red,green,blue) values.
/****补充****/
单通道图:俗称灰度图,每个像素点只能有一个值表示颜色,像素值在0-255之间(0是黑色,255是白色,中间值是一些不同等级的灰色)。
三通道图(RGB):每个像素点有三个值表示,对红、绿、蓝三个颜色的通道值变化以及它们之间的相互叠加来得到各种各样的颜色。三通道灰度图指的是三个通道的值相同。
Biological Connection
某些神经元只对特定方向的边缘做出响应,一些神经元只对垂直方向做出响应,一些只对水平方向等。这些神经元都在一个柱状组织里(人眼中的光感受器:柱状体,对事物有一个总体感知),是卷积神经网络的基础。
First Layer - Math Part(Convolutional Layer aka conv layer)

The filter(or a neuron神经元/kernel核) has an array of numbers,called weights or parameters. The filter is convolving, next step(stride) is moving to the right by 1 unit.
The depth of this filter has to be the same as the depth of the input, so the filter is 5*5*3. If we use two filters(5*5*3), the output would be 28*28*2.
First Layer - High Level Perspective
Each of these filters can be thought of as feature identifiers(straight edges, colors, curves ect.).
E.g. a curve detector

The filter will have a pixel structure in which there will be higher numerical values along the area that is a shape of a curve.

So we take this image as example.


(可见第一幅图匹配度高,第二幅匹配度低)
Going Deeper Through the Network
A classic CNN architecture would look like this:
Input -> Conv -> ReLU -> Conv -> ReLU -> Pool -> ReLU -> Conv -> ReLU -> Pool -> Fully Connected Layer
(ReLU:激活函数,Pool:池化层)
There're other layers that are interspersed(点缀,散布) between these conv layers, they provide nonlinearities (ReLU) and preservation(维度保护) of dimension(Pool) that help to improve the robustness(鲁棒性) of the network and control overfitting.
As you go through more and more conv layers,(i).you get activation maps that represent more and more complex features;(ii).the filters begin to have a larger and larger receptive field.
Fully Connected Layer(FC)
全连接层在整个网络中起到分类器的作用,可用卷积实现。
目前全连接由于参数冗余(仅全连接层参数就可占整个网络参数80%左右),近期有使用全局平均池化(global average pooling,GAP),通常有较好的预测性能。
A Beginner's Guide To Understanding Convolutional Neural Networks Part One (CNN)笔记的更多相关文章
- A Beginner's Guide To Understanding Convolutional Neural Networks(转)
A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...
- (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2
Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...
- (转)A Beginner's Guide To Understanding Convolutional Neural Networks
Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...
- [转] Understanding Convolutional Neural Networks for NLP
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 讲CNN以及其在NLP的应用,非常 ...
- Understanding Convolutional Neural Networks for NLP
When we hear about Convolutional Neural Network (CNNs), we typically think of Computer Vision. CNNs ...
- [转]An Intuitive Explanation of Convolutional Neural Networks
An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive ...
- An Intuitive Explanation of Convolutional Neural Networks
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ An Intuitive Explanation of Convolu ...
- 一目了然卷积神经网络 - An Intuitive Explanation of Convolutional Neural Networks
An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intu ...
- 卷积神经网络用于视觉识别Convolutional Neural Networks for Visual Recognition
Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalizat ...
随机推荐
- http协议:http请求、http响应、间隔时间跳转页面、禁用浏览器缓存
转自:https://blog.csdn.net/u013372487/article/details/46991623 http协议 1. http协议是建立在 tcp/ip协议基础上. 2. 我 ...
- 利用 Monitor.TryEnter 来规避 .NET 线程死锁的源代码
在开发多线程的应用程序时,我们会大量用到 lock (...) {} 块.如果 lock 的对象比较多,非常容易发生死锁.死锁的发生很难预料,而且一旦发生在界面线程上,界面就不再刷新响和应用户输入:如 ...
- Git切换分支并提交到远程分支
1. 在本地需要提交的文件同级目录运行git bash 2. 初始化 git 运行环境 $ git init 3. 新建本地分支develop $ git checkout -b decelop 4. ...
- Win10带有网络连接的安全模式怎么开启?
安全模式是在Windows系统中不加载第三方设备驱动程序的情况下启动电脑,从而可以方便的检测与修复电脑系统的错误,比如在安全模式下可以删除某些顽固的文件.查杀病毒.修复系统故障.卸载恶意软件等.不过在 ...
- Spark Submit给jar包中的main函数传递参数
1 示范 spark-submit --master xxx demo.jar "arg1" "arg2" 运行的jar包和传参放在最后,就可以了
- 语义分割之RefineNet
背景介绍 近来年,深度卷积网络在目标检测方面取得了一定的成绩.但对于密集预测,仍存在一定不足,原因是频繁的卷积和池化导致最终的特征分辨率降低. 针对这个问题,目前主要采用两种方法:第一种:空洞卷积,如 ...
- The basic concept of information theory.
Deep Learning中会接触到的关于Info Theory的一些基本概念.
- 如何在VPC中安装Ubuntu
在虚拟机 VPC2007 中安装Ubuntu 方法A:(断网络连接) 1.用载入ISO镜像启动一台标准的 xp设置的虚拟机 2.按 F4 选择启动模式,选择图形模式并确认. 3.按 F6 在启动配置中 ...
- Linux用户账号文件——passwd
/etc/passwd文件是UNIX安全的关键文件之一.该文件用于用户登录时校验用户的登录名.加密的口令数据项.用户ID(UID).默认的用户组ID(GID).用户信息.用户主目录以及登录后使用的sh ...
- 点击startup.bat启动tomcat出现乱码
找到tomcat目录下的/conf/logging.properties添加语句:java.util.logging.ConsoleHandler.encoding = GBK重启tomcat 问题解 ...