原文链接:https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/

借这篇文章进行卷积神经网络的初步理解(Convolutional Nerual Networks)

Image Classification

  Image classification(图像分类) is the task of taking an input image and outputting a class(a dog, a cat, ect.) or a probablity of classes that best describes the image.

Inputs and Outputs

  When a computer sees an image, it will see an array of pixel values, e.g. 32*32*3, RGB(red,green,blue) values.

  /****补充****/

  单通道图:俗称灰度图,每个像素点只能有一个值表示颜色,像素值在0-255之间(0是黑色,255是白色,中间值是一些不同等级的灰色)。

  三通道图(RGB):每个像素点有三个值表示,对红、绿、蓝三个颜色的通道值变化以及它们之间的相互叠加来得到各种各样的颜色。三通道灰度图指的是三个通道的值相同。

Biological Connection

  某些神经元只对特定方向的边缘做出响应,一些神经元只对垂直方向做出响应,一些只对水平方向等。这些神经元都在一个柱状组织里(人眼中的光感受器:柱状体,对事物有一个总体感知),是卷积神经网络的基础。

First Layer - Math Part(Convolutional Layer aka conv layer)

  

  The filter(or a neuron神经元/kernel) has an array of numbers,called weights or parameters. The filter is convolving, next step(stride) is moving to the right by 1 unit.

  The depth of this filter has to be the same as the depth of the input, so the filter is 5*5*3. If we use two filters(5*5*3), the output would be 28*28*2.

First Layer - High Level Perspective

  Each of these filters can be thought of as feature identifiers(straight edges, colors, curves ect.).

  E.g. a curve detector

  The filter will have a pixel structure in which there will be higher numerical values along the area that is a shape of a curve.

  

  So we take this image as example.

  

  (可见第一幅图匹配度高,第二幅匹配度低)

Going Deeper Through the Network

  A classic CNN architecture would look like this:

  Input -> Conv -> ReLU -> Conv -> ReLU -> Pool -> ReLU -> Conv -> ReLU -> Pool -> Fully Connected Layer

  (ReLU:激活函数,Pool:池化层)

  There're other layers that are interspersed(点缀,散布) between these conv layers, they provide nonlinearities (ReLU) and preservation(维度保护) of dimension(Pool) that help to improve the robustness(鲁棒性) of the network and control overfitting.

  As you go through more and more conv layers,(i).you get activation maps that represent more and more complex features;(ii).the filters begin to have a larger and larger receptive field.

Fully Connected Layer(FC)

  全连接层在整个网络中起到分类器的作用,可用卷积实现。

  目前全连接由于参数冗余(仅全连接层参数就可占整个网络参数80%左右),近期有使用全局平均池化(global average pooling,GAP),通常有较好的预测性能。

  

A Beginner's Guide To Understanding Convolutional Neural Networks Part One (CNN)笔记的更多相关文章

  1. A Beginner's Guide To Understanding Convolutional Neural Networks(转)

    A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...

  2. (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...

  3. (转)A Beginner's Guide To Understanding Convolutional Neural Networks

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...

  4. [转] Understanding Convolutional Neural Networks for NLP

    http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 讲CNN以及其在NLP的应用,非常 ...

  5. Understanding Convolutional Neural Networks for NLP

    When we hear about Convolutional Neural Network (CNNs), we typically think of Computer Vision. CNNs ...

  6. [转]An Intuitive Explanation of Convolutional Neural Networks

    An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive ...

  7. An Intuitive Explanation of Convolutional Neural Networks

    https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ An Intuitive Explanation of Convolu ...

  8. 一目了然卷积神经网络 - An Intuitive Explanation of Convolutional Neural Networks

    An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intu ...

  9. 卷积神经网络用于视觉识别Convolutional Neural Networks for Visual Recognition

    Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalizat ...

随机推荐

  1. webpack整合 .vue 文件,集成 vue-loader

    webpack集成vue-loader 创建一个文件夹 test_webpack_vue 在 test_webpack_vue 下新建目录 src 在 src 目录下 新建文件 index.html ...

  2. golang实现RSA加密解密

    非对称加密示意图: 在此可以看到,非对称加密是通过两个密钥(公钥-私钥)来实现对数据的加密和解密的.公钥用于加密,私钥用于解密. RSA公钥和私钥生成: package main import ( & ...

  3. Java面向对象(二)

    面向对象(Object Oriented) Java支持面向对象三大特性:封装.继承.多态.(抽象)1.封装(Encapsulation)封装:隐藏对象内部的复杂性,只对外公开简单的接口.便于外界调用 ...

  4. Yii2 DatePicker时间选择器的使用

    bootstrap-Date Time Picker 详细配置请参考http://www.bootcss.com/p/bootstrap-datetimepicker/ use kartik\widg ...

  5. CentOS7连接无线网络

    背景  CentOS7.6最小化安装,没有网线,幸好有无线网卡.下面我们直接进入主题.  附:安装教程 主题--连接无线网络 最小化安装后,裸机没有ifconfig,没有iw,最可怕的是没有网线 但我 ...

  6. python基础编程:生成器、迭代器、time模块、序列化模块、反序列化模块、日志模块

    目录: 生成器 迭代器 模块 time 序列化 反序列化 日志 一.生成器 列表生成式: a = [1,2,3,3,4,5,6,7,8,9,10] a = [i+1 for i in a ] prin ...

  7. idea管理tomcat

    第一步,打开idea的文件——>设置——选择Application Servers: 第二步,点击+号,下拉选择Tomcat Server: 如果已经配置了环境变量CATALINA_HOME,也 ...

  8. rank 和 ROW_NUMBER 区别

    SELECT * , RANK() OVER ( PARTITION BY APP_NAME ORDER BY SETTING_NAME,SETTING_CODE ASC ) AS Rank FROM ...

  9. 数据库——Oracle(2)

    1 插入语句(insert): 1) 往表中所有的列值都插入列值 SQL> desc person2; 名称 ID NAME 案例:往person2表中任意的插入3条数据 insert into ...

  10. Summer training #5

    B:分析序列 构造树(优先队列) #include <bits/stdc++.h> #include <cstring> #include <iostream> # ...