原文链接:https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/

借这篇文章进行卷积神经网络的初步理解(Convolutional Nerual Networks)

Image Classification

  Image classification(图像分类) is the task of taking an input image and outputting a class(a dog, a cat, ect.) or a probablity of classes that best describes the image.

Inputs and Outputs

  When a computer sees an image, it will see an array of pixel values, e.g. 32*32*3, RGB(red,green,blue) values.

  /****补充****/

  单通道图:俗称灰度图,每个像素点只能有一个值表示颜色,像素值在0-255之间(0是黑色,255是白色,中间值是一些不同等级的灰色)。

  三通道图(RGB):每个像素点有三个值表示,对红、绿、蓝三个颜色的通道值变化以及它们之间的相互叠加来得到各种各样的颜色。三通道灰度图指的是三个通道的值相同。

Biological Connection

  某些神经元只对特定方向的边缘做出响应,一些神经元只对垂直方向做出响应,一些只对水平方向等。这些神经元都在一个柱状组织里(人眼中的光感受器:柱状体,对事物有一个总体感知),是卷积神经网络的基础。

First Layer - Math Part(Convolutional Layer aka conv layer)

  

  The filter(or a neuron神经元/kernel) has an array of numbers,called weights or parameters. The filter is convolving, next step(stride) is moving to the right by 1 unit.

  The depth of this filter has to be the same as the depth of the input, so the filter is 5*5*3. If we use two filters(5*5*3), the output would be 28*28*2.

First Layer - High Level Perspective

  Each of these filters can be thought of as feature identifiers(straight edges, colors, curves ect.).

  E.g. a curve detector

  The filter will have a pixel structure in which there will be higher numerical values along the area that is a shape of a curve.

  

  So we take this image as example.

  

  (可见第一幅图匹配度高,第二幅匹配度低)

Going Deeper Through the Network

  A classic CNN architecture would look like this:

  Input -> Conv -> ReLU -> Conv -> ReLU -> Pool -> ReLU -> Conv -> ReLU -> Pool -> Fully Connected Layer

  (ReLU:激活函数,Pool:池化层)

  There're other layers that are interspersed(点缀,散布) between these conv layers, they provide nonlinearities (ReLU) and preservation(维度保护) of dimension(Pool) that help to improve the robustness(鲁棒性) of the network and control overfitting.

  As you go through more and more conv layers,(i).you get activation maps that represent more and more complex features;(ii).the filters begin to have a larger and larger receptive field.

Fully Connected Layer(FC)

  全连接层在整个网络中起到分类器的作用,可用卷积实现。

  目前全连接由于参数冗余(仅全连接层参数就可占整个网络参数80%左右),近期有使用全局平均池化(global average pooling,GAP),通常有较好的预测性能。

  

A Beginner's Guide To Understanding Convolutional Neural Networks Part One (CNN)笔记的更多相关文章

  1. A Beginner's Guide To Understanding Convolutional Neural Networks(转)

    A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...

  2. (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...

  3. (转)A Beginner's Guide To Understanding Convolutional Neural Networks

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...

  4. [转] Understanding Convolutional Neural Networks for NLP

    http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 讲CNN以及其在NLP的应用,非常 ...

  5. Understanding Convolutional Neural Networks for NLP

    When we hear about Convolutional Neural Network (CNNs), we typically think of Computer Vision. CNNs ...

  6. [转]An Intuitive Explanation of Convolutional Neural Networks

    An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive ...

  7. An Intuitive Explanation of Convolutional Neural Networks

    https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ An Intuitive Explanation of Convolu ...

  8. 一目了然卷积神经网络 - An Intuitive Explanation of Convolutional Neural Networks

    An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intu ...

  9. 卷积神经网络用于视觉识别Convolutional Neural Networks for Visual Recognition

    Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalizat ...

随机推荐

  1. python中进制转换

    使用Python内置函数:bin().oct().int().hex()可实现进制转换. 先看Python官方文档中对这几个内置函数的描述: bin(x)Convert an integer numb ...

  2. Shell脚本grep命令

    三剑客:grep  sed  awk grep:文本行过滤工具 sed:  文本行编辑器(流编辑器) awk: 报告生成器,输出格式化 grep包含三个命令: grep egrep fgrep .他们 ...

  3. JDBC及PreparedStatement防SQL注入

    概述 JDBC在我们学习J2EE的时候已经接触到了,但是仅是照搬步骤书写,其中的PreparedStatement防sql注入原理也是一知半解,然后就想回头查资料及敲测试代码探索一下.再有就是我们在项 ...

  4. linux tty终端个 pts伪终端 telnetd伪终端

    转:http://blog.sina.com.cn/s/blog_735da7ae0102v2p7.html 终端tty.虚拟控制台.FrameBuffer的切换过程详解 Framebuffer Dr ...

  5. springboot中解决servlet乱码问题,使用配置类注册过滤器解决

    8.1 使用传统的Spring提供的字符编码过滤器 在03-springboot-web中的ServletConfig中配置文件类,注册字符编码过滤器 @Bean public FilterRegis ...

  6. 小程序UI设计(8)-布局分解-FlexBox的align-content应用

    FlexBox的align-content到底是什么鬼,我也搞了好半天才开发出来,目前工具中WViewRow组件使用了此属性,WViewColumn中此属性不起作用.下图是justify-conten ...

  7. Maven编译

    多模块 只有需要编译成jar的模块才设置build <build> <plugins> <plugin> <groupId>org.springfram ...

  8. Docker安装过程

    安装 Docker 源自:http://www.runoob.com/docker/centos-docker-install.html 从 2017 年 3 月开始 docker 在原来的基础上分为 ...

  9. BZOJ 2809: [Apio2012]dispatching(可并堆 左偏树板题)

    这道题只要读懂题目一切好说. 给出nnn个点的一棵树,每一个点有一个费用vvv和一个领导力aaa,给出费用上限mmm.求下面这个式子的最大值ax∗∣S∣ ( S⊂x的子树, ∑iv[i]≤m )\la ...

  10. BZOJ 4278: [ONTAK2015]Tasowanie (后缀数组 / 二分+hash)

    直接归并,然后如果哪边的后缀字典序比较小就去哪边,然后就可以后缀数组 博客传送门- 但是本蒟蒻不会后缀数组 Upd:Upd:Upd:现在会了233.一道差不多的题:BZOJ 1692: [Usaco2 ...