A Beginner's Guide To Understanding Convolutional Neural Networks Part One (CNN)笔记
原文链接:https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
借这篇文章进行卷积神经网络的初步理解(Convolutional Nerual Networks)
Image Classification
Image classification(图像分类) is the task of taking an input image and outputting a class(a dog, a cat, ect.) or a probablity of classes that best describes the image.
Inputs and Outputs
When a computer sees an image, it will see an array of pixel values, e.g. 32*32*3, RGB(red,green,blue) values.
/****补充****/
单通道图:俗称灰度图,每个像素点只能有一个值表示颜色,像素值在0-255之间(0是黑色,255是白色,中间值是一些不同等级的灰色)。
三通道图(RGB):每个像素点有三个值表示,对红、绿、蓝三个颜色的通道值变化以及它们之间的相互叠加来得到各种各样的颜色。三通道灰度图指的是三个通道的值相同。
Biological Connection
某些神经元只对特定方向的边缘做出响应,一些神经元只对垂直方向做出响应,一些只对水平方向等。这些神经元都在一个柱状组织里(人眼中的光感受器:柱状体,对事物有一个总体感知),是卷积神经网络的基础。
First Layer - Math Part(Convolutional Layer aka conv layer)

The filter(or a neuron神经元/kernel核) has an array of numbers,called weights or parameters. The filter is convolving, next step(stride) is moving to the right by 1 unit.
The depth of this filter has to be the same as the depth of the input, so the filter is 5*5*3. If we use two filters(5*5*3), the output would be 28*28*2.
First Layer - High Level Perspective
Each of these filters can be thought of as feature identifiers(straight edges, colors, curves ect.).
E.g. a curve detector

The filter will have a pixel structure in which there will be higher numerical values along the area that is a shape of a curve.

So we take this image as example.


(可见第一幅图匹配度高,第二幅匹配度低)
Going Deeper Through the Network
A classic CNN architecture would look like this:
Input -> Conv -> ReLU -> Conv -> ReLU -> Pool -> ReLU -> Conv -> ReLU -> Pool -> Fully Connected Layer
(ReLU:激活函数,Pool:池化层)
There're other layers that are interspersed(点缀,散布) between these conv layers, they provide nonlinearities (ReLU) and preservation(维度保护) of dimension(Pool) that help to improve the robustness(鲁棒性) of the network and control overfitting.
As you go through more and more conv layers,(i).you get activation maps that represent more and more complex features;(ii).the filters begin to have a larger and larger receptive field.
Fully Connected Layer(FC)
全连接层在整个网络中起到分类器的作用,可用卷积实现。
目前全连接由于参数冗余(仅全连接层参数就可占整个网络参数80%左右),近期有使用全局平均池化(global average pooling,GAP),通常有较好的预测性能。
A Beginner's Guide To Understanding Convolutional Neural Networks Part One (CNN)笔记的更多相关文章
- A Beginner's Guide To Understanding Convolutional Neural Networks(转)
A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural ...
- (转)A Beginner's Guide To Understanding Convolutional Neural Networks Part 2
Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...
- (转)A Beginner's Guide To Understanding Convolutional Neural Networks
Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolution ...
- [转] Understanding Convolutional Neural Networks for NLP
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 讲CNN以及其在NLP的应用,非常 ...
- Understanding Convolutional Neural Networks for NLP
When we hear about Convolutional Neural Network (CNNs), we typically think of Computer Vision. CNNs ...
- [转]An Intuitive Explanation of Convolutional Neural Networks
An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive ...
- An Intuitive Explanation of Convolutional Neural Networks
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ An Intuitive Explanation of Convolu ...
- 一目了然卷积神经网络 - An Intuitive Explanation of Convolutional Neural Networks
An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intu ...
- 卷积神经网络用于视觉识别Convolutional Neural Networks for Visual Recognition
Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalizat ...
随机推荐
- <(* ̄▽ ̄*)/低碳生活管理系统
首次在博客园发布文章,都是个人理解,有很多不足,多多包涵. 下面是对做过的作业低碳生活管理系统的剖析: 一:(建类) 二:(在Program[或自己命名的类]里调用SQL命名空间) 三:(Main方法 ...
- go语言入门(2)数据类型
1,命名 Go语言中的函数名.变量名.常量名.类型名.语句标号和包名等所有的命名,都遵循一个简单的命名规则:一个名字必须以一个字母(Unicode字母)或下划线开头,后面可以跟任意数量的字母.数字或下 ...
- nps内网渗透利用
0x00 前言 对比了比较多的代理工具,如ew流量不稳定,容易断:frsocks目前免杀,也是容易断.frp需要落地配置文件,不符合渗透的规则.reg正向的socks,速度比较慢,扫描是个问题.其实我 ...
- Delphi 使用数据库浏览器
樊伟胜
- 《python解释器源码剖析》第10章--python虚拟机中的一般表达式
10.0 序 上一章中,我们通过PyEval_EvalFrameEx看到了python虚拟机的整体框架,那么这一章我们将深入到PyEval_EvalFrameEx的各个细节当中,深入剖析python的 ...
- 《python解释器源码剖析》第8章--python的字节码与pyc文件
8.0 序 我们日常会写各种各样的python脚本,在运行的时候只需要输入python xxx.py程序就执行了.那么问题就来了,一个py文件是如何被python变成一系列的机器指令并执行的呢? 8. ...
- LInux基于nginx与OpenSSL实现https访问
注意!!首先在nginx安装时添加--with-http_ssl_module模块,否则将会报错,只能从头开始了 自建证书: 通过openssl命令(软件包:openssl :openssl-deve ...
- deep_learning_neural network梯度下降
神经网络优化算法:梯度下降法.Momentum.RMSprop和Adam 最近回顾神经网络的知识,简单做一些整理,归档一下神经网络优化算法的知识.关于神经网络的优化,吴恩达的深度学习课程讲解得非常通俗 ...
- DataTable To List<T> DataTable Linq学习笔记
LINQ 查询适用于实现的数据源 IEnumerable<T>接口或System.Query.IQueryable接口. DataTable类默认是没有实现以上接口的. 所以要在DataT ...
- jQuery获取表单全部数据
iQuery如何获取表单的全部数据,用于ajax提交 var formData = {}; var t = $('#Form').serializeArray(); $.each(t, functio ...