Given a non-negative integer N, find the largest number that is less than or equal to N with monotone increasing digits.

(Recall that an integer has monotone increasing digits if and only if each pair of adjacent digits x and y satisfy x <= y.)

Example 1:

Input: N = 10
Output: 9

Example 2:

Input: N = 1234
Output: 1234

Example 3:

Input: N = 332
Output: 299

Note: N is an integer in the range [0, 10^9].

这道题给了一个非负数,让我们求一个数字小于等于给定数字,且该数字各位上的数字是单调递增的。先来分析题目中给的几个例子吧,首先如果是 10 的话,由于1大于0,所以不是单调自增的,那么返回的数就是9。第二个例子是 1234,各位上已经满足单调自增的条件了,返回原数即可。第三个例子是 332,最后一位2小于之前的3,那么此时将前面位减1,先变成322,再往前看,还是小于前面的3,那么再将前面位减1,就变成了 222,此时 222 不是最大的单调递增数,可以将后面两位变成9,于是乎就有了 299,小于给定的 332,符合题意。如果给定的数字是 232,那么就会得到 229,这样可以发现规律,要找到从后往前遍历的最后一个值升高的位置,让前一位减1,并把当前位以及后面的所有位都变成9,就可以得到最大的单调递增数啦。

用j表示最后一个值升高的位置,具体来说应该是其前一位的值大,初始化为总位数n,然后从后往前遍历,因为每次要和前一位比较,为防止越界,应遍历到第二个数停止,如果当前位大于等于前一位,符合单调递增,直接跳过;否则就将前一位自减1,j赋值为当前位i,循环结束后,从j位到末尾的位数都改为9即可,参见代码如下:

class Solution {
public:
int monotoneIncreasingDigits(int N) {
string str = to_string(N);
int n = str.size(), j = n;
for (int i = n - ; i > ; --i) {
if (str[i] >= str[i - ]) continue;
--str[i - ];
j = i;
}
for (int i = j; i < n; ++i) {
str[i] = '';
}
return stoi(str);
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/738

类似题目:

Remove K Digits

参考资料:

https://leetcode.com/problems/monotone-increasing-digits/

https://leetcode.com/problems/monotone-increasing-digits/discuss/109811/Simple-and-very-short-C%2B%2B-solution

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Monotone Increasing Digits 单调递增数字的更多相关文章

  1. [LeetCode] 738. Monotone Increasing Digits 单调递增数字

    Given a non-negative integer N, find the largest number that is less than or equal to N with monoton ...

  2. 738. Monotone Increasing Digits 单调递增的最接近数字

    [抄题]: Given a non-negative integer N, find the largest number that is less than or equal to N with m ...

  3. 402. Remove K Digits/738.Monotone Increasing Digits/321. Create Maximum Number

    Given a non-negative integer num represented as a string, remove k digits from the number so that th ...

  4. [Swift]LeetCode738. 单调递增的数字 | Monotone Increasing Digits

    Given a non-negative integer N, find the largest number that is less than or equal to Nwith monotone ...

  5. 【LeetCode】738. Monotone Increasing Digits 解题报告(Python)

    [LeetCode]738. Monotone Increasing Digits 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu ...

  6. 【leetcode】Monotone Increasing Digits

    Given a non-negative integer N, find the largest number that is less than or equal to N with monoton ...

  7. 738. Monotone Increasing Digits

    Given a non-negative integer N, find the largest number that is less than or equal to N with monoton ...

  8. LC 738. Monotone Increasing Digits

    Given a non-negative integer N, find the largest number that is less than or equal to N with monoton ...

  9. LeetCode Monotone Stack Summary 单调栈小结

    话说博主在写Max Chunks To Make Sorted II这篇帖子的解法四时,写到使用单调栈Monotone Stack的解法时,突然脑中触电一般,想起了之前曾经在此贴LeetCode Al ...

随机推荐

  1. LeetCode-391. 完美矩形(使用C语言编译,详解)

    链接:https://leetcode-cn.com/problems/perfect-rectangle/description/ 题目 我们有 N 个与坐标轴对齐的矩形, 其中 N > 0, ...

  2. Java虚拟机16:Metaspace

    被废弃的持久代 想起之前面试的时候有面试官问起过我一个问题:Java 8为什么要废弃持久代即Metaspace的作用.由于当时使用的Java 7且研究重心不在JVM上,一下没有回答上来,今天突然想起这 ...

  3. hibernate框架学习笔记6:事务

    MySQL的事务.JDBC事务操作: 详细见这篇文章:比较详细 http://www.cnblogs.com/xuyiqing/p/8430214.html 如何在hibernate中配置隔离级别: ...

  4. 项目Beta冲刺Day6

    项目进展 李明皇 今天解决的进度 进行前后端联动调试 明天安排 完善程序运行逻辑 林翔 今天解决的进度 服务器端发布消息,删除消息,检索消息,个人发布的action 明天安排 图片功能遇到问题,微信小 ...

  5. python 继承基础

    class annamal: def chi(self): print(self.name + '吃') def he(self): print(self.name + '喝') class dog( ...

  6. Flask 学习 十三 应用编程接口

    最近这些年,REST已经成为web services和APIs的标准架构,很多APP的架构基本上是使用RESTful的形式了. REST的六个特性: 客户端-服务器(Client-Server)服务器 ...

  7. Network in Network

     论文要点: 用更有效的非线性函数逼近器(MLP,multilayer perceptron)代替 GLM 以增强局部模型的抽象能力.抽象能力指的模型中特征是对于同一概念的变体的不变形. 使用 gl ...

  8. python之路--day8---day9--两日内容

    一.不使用函数的问题 1,代码的组织结构不清晰,可读性差 2,遇到重复的功能只能重复编写实现代码,代码冗余 3,功能需要扩展时,需要找出所有实现该功能的地方修改,无法统一管理且维护难度极大 二.函数是 ...

  9. Spring邮件发送1

    注意:邮件发送code中,邮件服务器的申请和配置是比较主要的一个环节,博主这里用的是QQ的邮件服务器.有需要的可以谷歌.百度查下如何开通. 今天看了下Spring的官方文档的邮件发送这一章节.在这里记 ...

  10. New UWP Community Toolkit - DeveloperTools

    概述 UWP Community Toolkit  中有一个开发者工具集 DeveloperTools,可以帮助开发者在开发过程中进行 UI 和功能的调试,本篇我们结合代码详细讲解  Develope ...