HDU 3949 XOR [高斯消元XOR 线性基]
题意:
给你 N个数,从中取出若干个进行异或运算 , 求最
后所有可以得到的异或结果中的第k小值
N个数高斯消元求出线性基后,设秩为$r$,那么总共可以组成$2^r$中数字(本题不能不选,所以$2^r -1$)
然后如果$k \ge 2^r$就不存在啦
否则一定可以有$k$小,因为现在$1..r$行每行都有一位是1(左面是最高位)
从高到低枚举k的二进制,如果是1就异或上对应的行就行了,最后就是k小值啦
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bitset>
using namespace std;
typedef long long ll;
const int N=1e4+,INF=1e9;
inline ll read(){
char c=getchar();ll x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,Q;
ll a[N],k,bin[N];
void ini(){
bin[]=;for(int i=;i<=;i++) bin[i]=bin[i-]<<;
}
int now;
void Gauss(){
now=;
for(int i=;i>=;i--){
int j=now;
while(j<=n&&!(a[j]&bin[i])) j++;
if(j==n+) continue;
if(j!=now) swap(a[j],a[now]);
for(int k=;k<=n;k++)
if(k!=now&&(a[k]&bin[i])) a[k]^=a[now];
now++;
}
now--;
}
ll Query(ll k){//printf("Q %lld\n",k);
ll ans=;
if(now!=n) k--;
if(k>=bin[now]) return -;
for(int i=;i<=now;i++)
if(k&bin[now-i]) ans^=a[i];
return ans;
}
int main(){
freopen("in","r",stdin);
ini();
int T=read(),cas=;
while(T--){printf("Case #%d:\n",++cas);
n=read();
for(int i=;i<=n;i++) a[i]=read();
Gauss();
Q=read();
while(Q--) printf("%lld\n",Query(read()));
}
}
HDU 3949 XOR [高斯消元XOR 线性基]的更多相关文章
- 【bzoj4269】再见Xor 高斯消元求线性基
题目描述 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. 输入 第一行一个正整数N. 接下来一行N个非负整数. 输出 一行,包含两 ...
- HDU3949/AcWing210 XOR (高斯消元求线性基)
求第k小的异或和,用高斯消元求更简单一些. 1 //用高斯消元求线性基 2 #include<bits/stdc++.h> 3 using namespace std; 4 #define ...
- 【BZOJ2115】[Wc2011] Xor 高斯消元求线性基+DFS
[BZOJ2115][Wc2011] Xor Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ...
- BZOJ4269再见Xor——高斯消元解线性基
题目描述 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. 输入 第一行一个正整数N. 接下来一行N个非负整数. 输出 一行,包含两 ...
- 【bzoj2115】[Wc2011] Xor DFS树+高斯消元求线性基
题目描述 输入 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图 ...
- 【bzoj3105】[cqoi2013]新Nim游戏 高斯消元求线性基
题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从 ...
- 【bzoj4004】[JLOI2015]装备购买 贪心+高斯消元求线性基
题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j < ...
- 【BZOJ2322】[BeiJing2011]梦想封印 高斯消元求线性基+DFS+set
[BZOJ2322][BeiJing2011]梦想封印 Description 渐渐地,Magic Land上的人们对那座岛屿上的各种现象有了深入的了解. 为了分析一种奇特的称为梦想封印(Fantas ...
- 【BZOJ2844】albus就是要第一个出场 高斯消元求线性基
[BZOJ2844]albus就是要第一个出场 Description 已知一个长度为n的正整数序列A(下标从1开始), 令 S = { x | 1 <= x <= n }, S 的幂集2 ...
随机推荐
- gulp + es6 + babel+ angular 搭建环境并实现简单的路由
1.ECMAscript 6的语法糖面临的唯一问题就是浏览器兼容的问题,使得很多程序员望而怯步. 2.babel的作用就是将es6的语法编译成es5被浏览器所识别.这样就可以任性的使用es6了. 3. ...
- 01 mysql的安装(windows)
在安装mysql之前,一般是先下载mysql,推荐大家去Oracle的官网下载,而且尽量使用免安装的版本(即压缩版,解压之后就可以使用的版本,不是.exe的安装版本),因为安装版的mysql在安装过程 ...
- phpstudy最新版中php5.6版报错
- UE4/Unity3D中同时捕获多高清摄像头的高效插件
本文主要讲实现过程的一些坑. 先说下要实现的目标,主要功能在UE4/Unity中都要用,能同时捕获多个摄像头,并且捕获的图片要达到1080p25桢上,并且需要经过复杂的图片处理后丢给UE4/Unity ...
- Mybatis问题:There is no getter for property named 'unitId' in 'class java.lang.String'
Mybatis遇到的问题 问题: org.mybatis.spring.MyBatisSystemException: nested exception is org.apache.ibatis.re ...
- 使用layui-tree美化左侧菜单,点击生成tab选项
layui-tree美化左侧菜单 html <div class="layui-side layui-bg-black"> <div class="la ...
- mmap 测试的一些坑
最近遇到一个mmap的问题,然后为了测试该问题,写了如下测试代码: #include <sys/mman.h> #include <sys/stat.h> #include & ...
- 腾讯工程师带你深入解析 MySQL binlog
欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 本文由 腾讯云数据库内核团队 发布在云+社区 1.概述 binlog是Mysql sever层维护的一种二进制日志,与innodb引擎中的red ...
- tp5无法隐藏index.php入口文件
一: 官方文件: <IfModule mod_rewrite.c> Options +FollowSymlinks -Multiviews RewriteEngine on Rewrite ...
- UUID.randomUUID().toString()
UUID.randomUUID().toString()是javaJDK提供的一个自动生成主键的方法.UUID(Universally Unique Identifier)全局唯一标识符,是指在一台机 ...