这道题还是非常有意思的,题意很简单,就是给定一个图,和图上的双向边,要求1号节点的度(连接边的条数)等于K,求这棵树的生成树。

我们首先要解决,如何让1号节点的度时为k的呢???而且求的是生成树,意思是不是所有边都会选择。那么我们如何选择才能保证1号节点有K个度呢???这里就要考虑联通分量的问题了,我们刨除1号点,那么联通分量的个数,就是我们让图联通的最小个数,因此我们需要用并查集,把点分在不同的联通块内部。

再考虑我们每个联通块,至少需要1条连接1号点的边。不够K再添加连接1号点的边。

然后考虑由于是生成树,我们可以枚举每个联通块连接1的点,DFS找出生成树边,记录即可。

DFS+并查集版本:

#include<iostream>
#include<string.h>
#include<stdio.h>
#include<algorithm>
#include<vector>
#define pii pair<int,int>
#define mp make_pair
using namespace std;
const int maxx = 2e5+;
int fa[maxx];
vector<int>G[maxx];
vector<int>p;
vector<pii>ans;
struct node
{
int u,v;
} a[maxx];
int vis[maxx];
int v[maxx];
int Find(int x)
{
return fa[x]==x?x:(fa[x]=Find(fa[x]));
}
void dfs(int x)
{
int nex;
for (int i=; i<G[x].size(); i++)
{
nex=G[x][i];
if (nex==)continue;
if (v[nex]==)
{
v[nex]=;
ans.push_back(mp(x,nex));
dfs(nex);
}
}
}
int main()
{
int n,m,k;
while(~scanf("%d%d%d",&n,&m,&k))
{
ans.clear();
memset(vis,,sizeof(vis));
memset(v,,sizeof(v));
for (int i=; i<=n; i++)
{
fa[i]=i;
}
for (int i=; i<=m; i++)
{
scanf("%d%d",&a[i].u,&a[i].v);
G[a[i].u].push_back(a[i].v);
G[a[i].v].push_back(a[i].u);
if (a[i].u!= && a[i].v!=)
{
int fx=Find(a[i].u),fy=Find(a[i].v);
fa[fx]=fy;
}
}
int cnt=;
for (int i=; i<=m; i++)
{
if (a[i].u== || a[i].v==)
{
int fx=Find(a[i].u),fy=Find(a[i].v);
if (fx!=fy)
{
vis[i]=;
if (a[i].u==)
{
p.push_back(a[i].v);
}
else
{
p.push_back(a[i].u);
}
v[a[i].u]=;
v[a[i].v]=;
ans.push_back(mp(a[i].u,a[i].v));
cnt++;
fa[fx]=fy;
}
else
{
vis[i]=;
}
}
}
if (cnt>k)
{
printf("NO\n");
continue;
}
k-=cnt;
for (int i=; i<=m; i++)
{
if (k==)break;
if(vis[i]==)
{
k--;
ans.push_back(mp(a[i].u,a[i].v));
if (a[i].u==){
p.push_back(a[i].v);
}else {
p.push_back(a[i].u);
}
v[a[i].u]=;
v[a[i].v]=;
vis[i]=;
}
}
if (k!=)
{
printf("NO\n");
continue;
}
v[]=;
printf("YES\n");
for (int i=; i<p.size(); i++)
{
dfs(p[i]);
}
for (int i=; i<ans.size(); i++)
{
printf("%d %d\n",ans[i].first,ans[i].second);
}
}
return ;
}

当然有大佬提出了更牛逼的做法,仍然是用并查集,单独处理连接1的边,然后枚举每条边,当这个点的不是指向1的,并且边的两点却不在一个连通分量里面,那么这条边是必选的。

并查集版本:

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<vector>
using namespace std;
const int maxx = 2e5+;
struct node
{
int u,v;
} a[maxx];
int fa[maxx];
int vis[maxx];
int Find(int x)
{
return fa[x]==x?x:(fa[x]=Find(fa[x]));
};
int add(int x,int y)
{
int fx=Find(x),fy=Find(y);
if(fx!=fy)fa[fx]=fy;
}
int main()
{
int n,m,d,k;
int u,v;
while(~scanf("%d%d%d",&n,&m,&k))
{
memset(vis,,sizeof(vis));
for (int i=; i<=n; i++)
{
fa[i]=i;
}
for (int i=; i<=m; i++)
{
scanf("%d%d",&a[i].u,&a[i].v);
if (a[i].u!= && a[i].v!=)
{
int fx=Find(a[i].u),fy=Find(a[i].v);
if (fx!=Find(fy))
{
fa[fx]=fy;
}
}
}
int cnt=;
for (int i=; i<=m; i++)
{
if (a[i].u== || a[i].v==)
{
int fx=Find(a[i].u),fy=Find(a[i].v);
if(fx!=fy)
{
vis[i]=;//必选
fa[fx]=fy;
cnt++;
}
else
{
vis[i]=;//备选
}
}
}
if (cnt>k)
{
printf("NO\n");
continue;
}
k-=cnt;
for (int i=; i<=m; i++) //选择剩下的和1相连的数目
{
if (k==)break;
if (vis[i]==)
{
vis[i]=;
//cout<<i<<endl;
k--;
int fx=Find(a[i].u),fy=Find(a[i].v);
fa[fx]=fy;
}
}
if (k!=)
{
printf("NO\n");
continue;
}
for (int i=; i<=n; i++) //再次初始化
{
fa[i]=i;
}
for (int i=;i<=m;i++){
if (vis[i]==){
int fx=Find(a[i].u),fy=Find(a[i].v);
fa[fx]=fy;
}
}
for (int i=; i<=m; i++)
{
if (a[i].u!=a[i].v && a[i].u!= && a[i].v!=)
{
int fx=Find(a[i].u),fy=Find(a[i].v);
if (fx!=fy)
{
fa[fx]=fy;
vis[i]=;
}
}
}
printf("YES\n");
for (int i=;i<=m;i++){
if(vis[i]==) printf("%d %d\n",a[i].u,a[i].v);
}
}
return ;
}

F2 - Spanning Tree with One Fixed Degree - 并查集+DFS的更多相关文章

  1. Codeforces 1133 F2. Spanning Tree with One Fixed Degree 并查集+生成树

    好久没更新博客了,一直懒得动,这次更新一下. 题意大概是:给出一个图,求它的一个一号节点的度数恰好为D的生成树的方案. 一开始随便水了个乱搞贪心,不出意外并没有过. 仔细思考之后,对于这个问题我们可以 ...

  2. UVALive 6910 Cutting Tree(离线逆序并查集)

    [题目]:(地址:) http://acm.hust.edu.cn/vjudge/contest/view.action?cid=97671#problem/E [题意]: 给出多棵树和两类操作:操作 ...

  3. 第46届ICPC澳门站 K - Link-Cut Tree // 贪心 + 并查集 + DFS

    原题链接:K-Link-Cut Tree_第46屆ICPC 東亞洲區域賽(澳門)(正式賽) (nowcoder.com) 题意: 要求一个边权值总和最小的环,并从小到大输出边权值(2的次幂):若不存在 ...

  4. HDU 4582 DFS spanning tree(DFS+贪心)(2013ACM-ICPC杭州赛区全国邀请赛)

    Problem Description Consider a Depth-First-Search(DFS) spanning tree T of a undirected connected gra ...

  5. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  6. BNUOJ 26229 Red/Blue Spanning Tree

    Red/Blue Spanning Tree Time Limit: 2000ms Memory Limit: 131072KB This problem will be judged on HDU. ...

  7. 多校 HDU - 6614 AND Minimum Spanning Tree (二进制)

    传送门 AND Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 ...

  8. E - Minimum Spanning Tree Gym - 102220E (转化+贡献)

    In the mathematical discipline of graph theory, the line graph of a simple undirected weighted graph ...

  9. Problem 1566 - C - Spanning Tree 动态最小生成树

    Problem 1566 - C - Spanning Tree 给出一个联通图,然后每次加一条边,每次需要求最小生成树 1 #include <iostream> 2 #include ...

随机推荐

  1. 使用mysql事件定时执行岗位七天下线任务

    最近做了一个招聘的项目,在项目中有一个定时下线的需求.在做之前我一直在考虑到底使用window 服务,还是使用调度,最终我选择使用mysql定时事件,因为这样简单方便. 思路:首先创建一个存储过程,通 ...

  2. 【Python实践-2】求一个或多个数的乘积

    # -*- coding: utf-8 -*- #定义一个函数,可接收一个或多个数并计算乘积 def product(*numbers): s=1 for n in numbers: s=s*n re ...

  3. body标签中l的相关标签

    字体标签: h1~h6.font. u.b,.strong. em. sup. sub 排版标签: div,.span.br.hr.center.pre 图片标签: img 超链接: a 列表标签: ...

  4. .NET Core微服务之基于MassTransit实现数据最终一致性(Part 1)

    Tip: 此篇已加入.NET Core微服务基础系列文章索引 一.预备知识:数据一致性 关于数据一致性的文章,园子里已经有很多了,如果你还不了解,那么可以通过以下的几篇文章去快速地了解了解,有个感性认 ...

  5. 【反编译系列】三、反编译神器(jadx)

    版权声明:本文为HaiyuKing原创文章,转载请注明出处! 概述 今天在看玩Android网站,搜索反编译的时候,才发现有个更好用的反编译工具.特此记录下. 下载 http://www.wanand ...

  6. 异常 - 虚拟机初始化错误 - Error occurred during initialization of VM

    目录 1 环境配置信息 1.1 服务器配置信息 1.2 Tomcat启动参数 2 问题描述 3 问题解决 4 关于vm.overcommit_memory参数 4.1 vm.overcommit_me ...

  7. springboot~ EventListener事件监听的使用

    EventListener事件触发和监听器可以对代码解耦,在一些与业务无关的,通用的操作方法,我们可以把它设计成事件监听器,像通知,消息这些模块都可以这样设计. 事件源 @Getter @Builde ...

  8. Vue父子组件传参新写法

    以前我在写接受自定义事件是这么写的: 后来我在官网看到这样一种说法:可以用$event代替emit事件传入的参数,于是我写成了这样: 直到昨天Vetur更新,给我报了这么一个错误: 报错原因:事件不能 ...

  9. Spring Boot 2.0 配置图文教程

    摘要: 原创出处 https://www.bysocket.com 「公众号:泥瓦匠BYSocket 」欢迎关注和转载,保留摘要,谢谢! 本章内容 自定义属性快速入门 外化配置 自动配置 自定义创建 ...

  10. Springboot 系列(十三)使用邮件服务

    在我们这个时代,邮件服务不管是对于工作上的交流,还是平时的各种邮件通知,都是一个十分重要的存在.Java 从很早时候就可以通过 Java mail 支持邮件服务.Spring 更是对 Java mai ...