这道题还是非常有意思的,题意很简单,就是给定一个图,和图上的双向边,要求1号节点的度(连接边的条数)等于K,求这棵树的生成树。

我们首先要解决,如何让1号节点的度时为k的呢???而且求的是生成树,意思是不是所有边都会选择。那么我们如何选择才能保证1号节点有K个度呢???这里就要考虑联通分量的问题了,我们刨除1号点,那么联通分量的个数,就是我们让图联通的最小个数,因此我们需要用并查集,把点分在不同的联通块内部。

再考虑我们每个联通块,至少需要1条连接1号点的边。不够K再添加连接1号点的边。

然后考虑由于是生成树,我们可以枚举每个联通块连接1的点,DFS找出生成树边,记录即可。

DFS+并查集版本:

#include<iostream>
#include<string.h>
#include<stdio.h>
#include<algorithm>
#include<vector>
#define pii pair<int,int>
#define mp make_pair
using namespace std;
const int maxx = 2e5+;
int fa[maxx];
vector<int>G[maxx];
vector<int>p;
vector<pii>ans;
struct node
{
int u,v;
} a[maxx];
int vis[maxx];
int v[maxx];
int Find(int x)
{
return fa[x]==x?x:(fa[x]=Find(fa[x]));
}
void dfs(int x)
{
int nex;
for (int i=; i<G[x].size(); i++)
{
nex=G[x][i];
if (nex==)continue;
if (v[nex]==)
{
v[nex]=;
ans.push_back(mp(x,nex));
dfs(nex);
}
}
}
int main()
{
int n,m,k;
while(~scanf("%d%d%d",&n,&m,&k))
{
ans.clear();
memset(vis,,sizeof(vis));
memset(v,,sizeof(v));
for (int i=; i<=n; i++)
{
fa[i]=i;
}
for (int i=; i<=m; i++)
{
scanf("%d%d",&a[i].u,&a[i].v);
G[a[i].u].push_back(a[i].v);
G[a[i].v].push_back(a[i].u);
if (a[i].u!= && a[i].v!=)
{
int fx=Find(a[i].u),fy=Find(a[i].v);
fa[fx]=fy;
}
}
int cnt=;
for (int i=; i<=m; i++)
{
if (a[i].u== || a[i].v==)
{
int fx=Find(a[i].u),fy=Find(a[i].v);
if (fx!=fy)
{
vis[i]=;
if (a[i].u==)
{
p.push_back(a[i].v);
}
else
{
p.push_back(a[i].u);
}
v[a[i].u]=;
v[a[i].v]=;
ans.push_back(mp(a[i].u,a[i].v));
cnt++;
fa[fx]=fy;
}
else
{
vis[i]=;
}
}
}
if (cnt>k)
{
printf("NO\n");
continue;
}
k-=cnt;
for (int i=; i<=m; i++)
{
if (k==)break;
if(vis[i]==)
{
k--;
ans.push_back(mp(a[i].u,a[i].v));
if (a[i].u==){
p.push_back(a[i].v);
}else {
p.push_back(a[i].u);
}
v[a[i].u]=;
v[a[i].v]=;
vis[i]=;
}
}
if (k!=)
{
printf("NO\n");
continue;
}
v[]=;
printf("YES\n");
for (int i=; i<p.size(); i++)
{
dfs(p[i]);
}
for (int i=; i<ans.size(); i++)
{
printf("%d %d\n",ans[i].first,ans[i].second);
}
}
return ;
}

当然有大佬提出了更牛逼的做法,仍然是用并查集,单独处理连接1的边,然后枚举每条边,当这个点的不是指向1的,并且边的两点却不在一个连通分量里面,那么这条边是必选的。

并查集版本:

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<vector>
using namespace std;
const int maxx = 2e5+;
struct node
{
int u,v;
} a[maxx];
int fa[maxx];
int vis[maxx];
int Find(int x)
{
return fa[x]==x?x:(fa[x]=Find(fa[x]));
};
int add(int x,int y)
{
int fx=Find(x),fy=Find(y);
if(fx!=fy)fa[fx]=fy;
}
int main()
{
int n,m,d,k;
int u,v;
while(~scanf("%d%d%d",&n,&m,&k))
{
memset(vis,,sizeof(vis));
for (int i=; i<=n; i++)
{
fa[i]=i;
}
for (int i=; i<=m; i++)
{
scanf("%d%d",&a[i].u,&a[i].v);
if (a[i].u!= && a[i].v!=)
{
int fx=Find(a[i].u),fy=Find(a[i].v);
if (fx!=Find(fy))
{
fa[fx]=fy;
}
}
}
int cnt=;
for (int i=; i<=m; i++)
{
if (a[i].u== || a[i].v==)
{
int fx=Find(a[i].u),fy=Find(a[i].v);
if(fx!=fy)
{
vis[i]=;//必选
fa[fx]=fy;
cnt++;
}
else
{
vis[i]=;//备选
}
}
}
if (cnt>k)
{
printf("NO\n");
continue;
}
k-=cnt;
for (int i=; i<=m; i++) //选择剩下的和1相连的数目
{
if (k==)break;
if (vis[i]==)
{
vis[i]=;
//cout<<i<<endl;
k--;
int fx=Find(a[i].u),fy=Find(a[i].v);
fa[fx]=fy;
}
}
if (k!=)
{
printf("NO\n");
continue;
}
for (int i=; i<=n; i++) //再次初始化
{
fa[i]=i;
}
for (int i=;i<=m;i++){
if (vis[i]==){
int fx=Find(a[i].u),fy=Find(a[i].v);
fa[fx]=fy;
}
}
for (int i=; i<=m; i++)
{
if (a[i].u!=a[i].v && a[i].u!= && a[i].v!=)
{
int fx=Find(a[i].u),fy=Find(a[i].v);
if (fx!=fy)
{
fa[fx]=fy;
vis[i]=;
}
}
}
printf("YES\n");
for (int i=;i<=m;i++){
if(vis[i]==) printf("%d %d\n",a[i].u,a[i].v);
}
}
return ;
}

F2 - Spanning Tree with One Fixed Degree - 并查集+DFS的更多相关文章

  1. Codeforces 1133 F2. Spanning Tree with One Fixed Degree 并查集+生成树

    好久没更新博客了,一直懒得动,这次更新一下. 题意大概是:给出一个图,求它的一个一号节点的度数恰好为D的生成树的方案. 一开始随便水了个乱搞贪心,不出意外并没有过. 仔细思考之后,对于这个问题我们可以 ...

  2. UVALive 6910 Cutting Tree(离线逆序并查集)

    [题目]:(地址:) http://acm.hust.edu.cn/vjudge/contest/view.action?cid=97671#problem/E [题意]: 给出多棵树和两类操作:操作 ...

  3. 第46届ICPC澳门站 K - Link-Cut Tree // 贪心 + 并查集 + DFS

    原题链接:K-Link-Cut Tree_第46屆ICPC 東亞洲區域賽(澳門)(正式賽) (nowcoder.com) 题意: 要求一个边权值总和最小的环,并从小到大输出边权值(2的次幂):若不存在 ...

  4. HDU 4582 DFS spanning tree(DFS+贪心)(2013ACM-ICPC杭州赛区全国邀请赛)

    Problem Description Consider a Depth-First-Search(DFS) spanning tree T of a undirected connected gra ...

  5. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  6. BNUOJ 26229 Red/Blue Spanning Tree

    Red/Blue Spanning Tree Time Limit: 2000ms Memory Limit: 131072KB This problem will be judged on HDU. ...

  7. 多校 HDU - 6614 AND Minimum Spanning Tree (二进制)

    传送门 AND Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 ...

  8. E - Minimum Spanning Tree Gym - 102220E (转化+贡献)

    In the mathematical discipline of graph theory, the line graph of a simple undirected weighted graph ...

  9. Problem 1566 - C - Spanning Tree 动态最小生成树

    Problem 1566 - C - Spanning Tree 给出一个联通图,然后每次加一条边,每次需要求最小生成树 1 #include <iostream> 2 #include ...

随机推荐

  1. asp.netcore 深入了解配置文件加载过程

    前言     配置文件中程序运行中,担当着不可或缺的角色:通常情况下,使用 visual studio 进行创建项目过程中,项目配置文件会自动生成在项目根目录下,如 appsettings.json, ...

  2. Android HandlerThread使用介绍以及源码解析

    摘要: 版权声明:本文出自汪磊的博客,转载请务必注明出处. 一.HandlerThread的介绍及使用举例              HandlerThread是什么鬼?其本质就是一个线程,但是Han ...

  3. 说说我为什么看好Spring Cloud Alibaba

    最近对<Spring Cloud Alibaba基础教程>系列的催更比较多,说一下最近的近况:因为打算Spring Boot 2.x一起更新.所以一直在改博客Spring Boot专题页和 ...

  4. 粮草先行——Android折叠屏开发技术点(一)

    最近有关折叠屏产品的新闻层出不穷,各家手机厂商也分别慢慢地亮出了自家的产品.然而市场上的一些APP仍然没有很好地适配这样的设备,显示不正常和应用重启的状况时有发生.因此,我会用接下来的几篇文章来点出有 ...

  5. C#工具:分词辅助类

    using System; using System.Collections; using System.IO; using System.Text.RegularExpressions; names ...

  6. SpringCloud-Eureka注册与发现

    这两年可以说微服务是热词,也是新领域,学习的成本也较高,基础东西太多比如什么Dubbo,zookeeper,Springboot等等.Dubbo也是实现服务治理又是阿里出的一套开源RPC框架,但是Sp ...

  7. arcgis api 3.x for js 入门开发系列十七在线天地图、百度地图、高德地图(附源码下载)

    前言 关于本篇功能实现用到的 api 涉及类看不懂的,请参照 esri 官网的 arcgis api 3.x for js:esri 官网 api,里面详细的介绍 arcgis api 3.x 各个类 ...

  8. Flutter项目之app升级方案

    题接上篇的文章的项目,还是那个空货管理app.本篇文章用于讲解基于Flutter的app项目的升级方案. 在我接触Flutter之前,做过一个比较失败的基于DCloud的HTML5+技术的app,做过 ...

  9. Python安装第三方包(模块/工具)出现链接超时,网速慢,安装不上的问题如何解决

    之前我的电脑重新装了系统以后,发现安装完Python后, 使用pip linstall 安装第三方包的时候,网速慢的一匹 有时候只有几百b/s ,而且还动不动就会出现无法安装,链接超时等问题. 今天我 ...

  10. <自动化测试方案_9>第九章、持续集成平台搭建

    第九章.持续集成平台搭建 (一)什么是持续集成 参考文章地址:https://blog.csdn.net/qq_32261399/article/details/76651376 敏捷软件开发(英语: ...