论文要点:

  1. 用更有效的非线性函数逼近器(MLP,multilayer perceptron)代替 GLM 以增强局部模型的抽象能力。抽象能力指的模型中特征是对于同一概念的变体的不变形。
  2. 使用 global average pooling 代替全连接层,提高模型的泛化能力。

GLM 与 MLP 的输入都是局部“像素”

全连接层可以替换成 1×1 卷积层

这个要好好想想!!!

Mlpconv layer

结合下图,来谈谈 Mlpconv layer 的要点:


从交叉通道(即交叉特征映射)池化的角度来看,上图中的网络结构等效于在正常卷积层上的级联交叉通道参数池化层。 每个池化层都会在输入特征图(input feature map)上执行加权线性重组,然后通过整流线性单元。 交叉通道池化所生成的特征图再作为下一交叉通道池化的输入,依次进行下去。这种级联的交叉通道参数池化结构允许交叉通道信息的进行复杂且可学习的交互。 交叉通道参数化池层也等价于具有1x1卷积核的卷积层。

上面是论文中对 NiN 一个很重要的解释,下面解释一下:交叉通道参数池化层也等价于具有1x1卷积核的卷积层到底是何意?

我们就以上图 MLP 的第一层为例说明一下,我们看到上图中一个 patch 作为 MLP 得输入,MLP 第一层的神经元我们可以看成是传统 CNN 中的 filter,即我们在同一个 patch 上同时使用多个 filter(然后通过relu),并且在 MLP 中的第二层将这些 filter 的输出进行线性组合(然后通过 relu),然后通过第三层输出一个值。 这与通过传统 CNN 卷积然后使用 1×1 卷积将一个 patch 上的多个 filter 加权线性组合的总体效果相同,比如一个3层 MLP 来可以通过两次 1×1 卷积(每次过 relu)来达到相同效果。

注意!!! 一个 MLP filter 在一个 patch 上只输出一个值,一个 MLP filter在整个输入层上共享参数,所以和传统 filter 一样, 这里使用多个MLP filter, 而MLP filter 的个数就是下一层feature map的深度。举例如下,下图为使用 NiN 改进的 AlexNet 的网络结构

global average pooling


global average pooling 与 average pooling 的差别就在 "global" 这一个字眼上。global 与 local 在字面上都是用来形容 pooling 窗口区域的。 local 是取 feature map 的一个子区域求平均值,然后滑动这个子区域; global 显然就是对整个 feature map 求平均值了。因此,global average pooling 的最后输出结果仍然是 10 个 feature map,而不是一个,只不过每个 feature map 只剩下一个像素罢了,这个像素就是求得的平均值,10个feature map就变成一个10维的向量,然后直接输入到softmax中。

global average pooling 极大地减少了模型的参数个数,防止模型过拟合,自带正则化光环

Network in Network的更多相关文章

  1. Deep Learning 24:读论文“Batch-normalized Maxout Network in Network”——mnist错误率为0.24%

    读本篇论文“Batch-normalized Maxout Network in Network”的原因在它的mnist错误率为0.24%,世界排名第4.并且代码是用matlab写的,本人还没装caf ...

  2. Deep Learning 25:读论文“Network in Network”——ICLR 2014

    论文Network in network (ICLR 2014)是对传统CNN的改进,传统的CNN就交替的卷积层和池化层的叠加,其中卷积层就是把上一层的输出与卷积核(即滤波器)卷积,是线性变换,然后再 ...

  3. Linux: service network/Network/NetworkManager

    Linux:service network/Network/NetworkManager start 这三种有什么不同? 1.network service的制御网络接口配置信息改动后,网络服务必须从 ...

  4. 1×1卷积的用途(Network in Network)

    1×1卷积,又称为Network in Network 如果卷积的输出输入都只是一个平面,那么1x1卷积核并没有什么意义,它是完全不考虑像素与周边其他像素关系. 但卷积的输出输入是长方体,所以1x1卷 ...

  5. Network In Network学习笔记

    Network In Network学习笔记 原文地址:http://blog.csdn.net/hjimce/article/details/50458190 作者:hjimce 一.相关理论 本篇 ...

  6. Network in Network 2

    <Network in Network>论文笔记 1.综述 这篇文章有两个很重要的观点: 1×1卷积的使用 文中提出使用mlpconv网络层替代传统的convolution层.mlp层实际 ...

  7. Network In Network——卷积神经网络的革新

    Network In Network 是13年的一篇paper 引用:Lin M, Chen Q, Yan S. Network in network[J]. arXiv preprint arXiv ...

  8. 论文《Network in Network》笔记

    论文:Lin M, Chen Q, Yan S. Network In Network[J]. Computer Science, 2013. 参考:关于CNN中1×1卷积核和Network in N ...

  9. NIN (Network In Network)

    Network In Network 论文Network In Network(Min Lin, ICLR2014). 传统CNN使用的线性滤波器是一种广义线性模型(Generalized linea ...

  10. [DeeplearningAI笔记]卷积神经网络2.5-2.7 Network in Network/1*1卷积/Inception网络/GoogleNet

    4.2深度卷积网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 Inception网络 --Szegedy C, Liu W, Jia Y, et al. Going deepe ...

随机推荐

  1. MySQL增量订阅&消费组件Canal POC

    POC的目的:1.与MYSQL的对接方式,配置文档2.订阅的延迟3.订阅后宕机消息会不会丢失4.能不能从指定的点开始重新订阅5.高并发写入的时候,日志的顺序是否还能保持,不考虑消费的情况订阅是否会延迟 ...

  2. 如何为Web应用选择托管主机

    PHP应用开发好了?恭喜你!不过,现在还没什么用,因为用户无法使用.你要把应用存储到服务器中,让预期受众能访问.一般来说,存储PHP应用有四种方式:共享服务器.虚拟私有服务器.专用服务器和平台即服务. ...

  3. Mybatis动态SQL单一基础类型参数用if标签

    Mybatis动态SQL单一基础类型参数用if标签时,test中应该用 _parameter,如: 1 2 3 4 5 6 <select id="selectByName" ...

  4. Solidity调试 - 实现变量打印

    Solidity没有print或console.log方法可以用来打印变量,这会给我们调试程序增加难度. Solidity有event功能,可以在event中记录变量信息,通过调用event方法也可以 ...

  5. WP-player——WordPress的一款好用的音乐插件

    作者的主页:http://webjyh.com/wp-player/ 安装:在WordPress后台搜索安装即可,或者去作者的主页下载安装. 使用方法:这个插件是通过短代码调用的,安装好插件之后便可以 ...

  6. HIVE和HADOOP的一些东西

    今天刚上班就要更新一个hive表(新年好呀我想说...),由于建立的外表直接替换hdfs文件就行了,但是替换完发现少了二行数据,原来之前做了关联,这就要用到hive的insert了! 先来说一下hiv ...

  7. input依次输入密码

    原理: 一个真正的可以输入的input框,opacity: 0,设定位层级:(视图不可见的) 再来6(n)个input,readyonly,用来显示,type为password,设置好样式:(视图可见 ...

  8. ABAP调试

    ABAP 开发系列(02): ABAP Development Workbench 介绍(下)- ABAP 调试器 8. Debugger – ABAP 调试器 开发程序,调试器是必不可少的工具,而A ...

  9. Android Studio设置字体和主题

    步骤:File >> settings >> Appearance & Behavior >> Appearance           >> ...

  10. 蓝牙4.0模块控制LED彩灯调光调色经验之谈

    基于蓝牙模块的智能LED彩灯调光调色控制思路如下: 在此,找一个低功耗蓝牙模块内嵌接入LED灯的控制电路板,接入LED彩灯的控制电路中. 蓝牙模块彩灯控制方式如下,本文两类来解说led灯的控制方式: ...