题目

P4137 Rmq Problem / mex

解析

莫队算法维护mex,

  • 往里添加数的时候,若添加的数等于\(mex\),\(mex\)就不能等于这个值了,就从这个数开始枚举找\(mex\);若不等于\(mex\),没有影响,因为它之前的所有数都出现过了,又出现一次不会怎样,放在后面又比\(mex\)大,肯定不是\(mex\).
  • 取出数的时候,如果这个数出现的次数变为了\(0\),\(mex\)就和这个数取一个\(min\)

代码

#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int n, m, mex;
int a[N], cnt[N], ans[N];
class node {
public :
int l, r, id, bl;
bool operator < (const node &oth) const {
return this->bl == oth.bl ? this->r < oth.r : this->l < oth.l;
}
} e[N]; template<class T>inline void read(T &x) {
x = 0; int f = 0; char ch = getchar();
while (!isdigit(ch)) f |= (ch == '-'), ch = getchar();
while (isdigit(ch)) x = x * 10 + ch - '0', ch = getchar();
x = f ? -x : x;
return ;
} inline void add(int x) {
cnt[a[x]]++;
int i = mex;
if (a[x] == mex) while (cnt[i]) i++;
mex = i;
} inline void del(int x) {
cnt[a[x]]--;
if (cnt[a[x]] == 0) mex = min(mex, a[x]);
} int main() {
read(n), read(m);
int k = sqrt(n);
for (int i = 1; i <= n; ++i) read(a[i]);
for (int i = 1, x, y; i <= m; ++i) {
read(x), read(y);
e[i] = (node) {x, y, i, x / k + 1};
}
sort(e + 1, e + 1 + m);
int l = 1, r = 0;
for (int i = 1; i <= m; ++i) {
int ll = e[i].l, rr = e[i].r;
while (l < ll) del(l++);
while (l > ll) add(--l);
while (r < rr) add(++r);
while (r > rr) del(r--);
ans[e[i].id] = mex;
}
for (int i = 1; i <= m; ++i) printf("%d\n", ans[i]);
return 0;
}

P4137 Rmq Problem / mex (莫队)的更多相关文章

  1. BZOJ 3339 && luogu4137 Rmq Problem / mex(莫队)

    P4137 Rmq Problem / mex 题目描述 有一个长度为n的数组{a1,a2,-,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. 输入输出格式 输入格式: 第一行n,m. ...

  2. 【luogu4137】 Rmq Problem / mex - 莫队

    题目描述 有一个长度为n的数组{a1,a2,…,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. 思路 莫队水过去了 233 #include <bits/stdc++.h> ...

  3. 洛谷 P4137 Rmq Problem /mex 解题报告

    P4137 Rmq Problem /mex 题意 给一个长为\(n(\le 10^5)\)的数列\(\{a\}\),有\(m(\le 10^5)\)个询问,每次询问区间的\(mex\) 可以莫队然后 ...

  4. 主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex

    题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空 ...

  5. 洛谷P4137 Rmq Problem / mex(莫队)

    题目描述 有一个长度为n的数组{a1,a2,…,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. 输入输出格式 输入格式: 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问l, ...

  6. P4137 Rmq Problem / mex

    目录 链接 思路 线段树 莫队 链接 https://www.luogu.org/problemnew/show/P4137 思路 做了好几次,每次都得想一会,再记录一下 可持久化权值线段树 区间出现 ...

  7. Luogu P4137 Rmq Problem / mex

    区间mex问题,可以使用经典的记录上一次位置之后再上主席树解决. 不过主席树好像不是很好写哈,那我们写莫队吧 考虑每一次维护什么东西,首先记一个答案,同时开一个数组记录一下每一个数出现的次数. 然后些 ...

  8. luogu P4137 Rmq Problem / mex(可持久化线段树)

    一开始想的是莫队,然后维护几个bitset,然后瞎搞.脑子里想了想实现,发现并不好写. 还是主席树好写.我们维护一个权值的线段树,记录每一个权值的最后一次出现的位置下标.我们查询的时候要在前\(r\) ...

  9. 洛谷 P4137 Rmq Problem/mex 题解

    题面 首先,由于本人太菜,不会莫队,所以先采用主席树的做法: 离散化是必须环节,否则动态开点线段数都救不了你: 我们对于每个元素i,插入到1~(i-1)的主席树中,第i颗线段树(权值线段树)对于一个区 ...

随机推荐

  1. Git开发分支使用与管理规范

    最稳定的代码放在 master 分支上(相当于 SVN 的 trunk 分支),我们不要直接在 master 分支上提交代码,只能在该分支上进行代码合并操作,例如将其它分支的代码合并到 master ...

  2. JAVA设计模式——简单工厂

    工厂模式分为三种:简单工厂模式,工厂方法模式,抽象工厂模式.我看有的书上和有的文章里是分为两种,没有简单工厂. 工厂模式主要的作用是:一个对象在实例化的时候可以选择多个类,在实例化的时候根据一些业务规 ...

  3. 3.JavaScript-语法、关键保留字及变量

    语法构成区分大小写标识符注释直接量字面量literal关键字保留字变量语法构成JavaScript 的语言核心 ECMAScript. 区分大小写ECMAScript 中的一切,包括变量.函数名和操作 ...

  4. WEB前端需要了解的XML相关基础知识

    什么是 XML? XML 指可扩展标记语言(EXtensible Markup Language) XML 是一种标记语言,很类似 HTML XML 的设计宗旨是传输数据,而非显示数据 XML 标签没 ...

  5. Android Studio工程项目打包成SDK(jar或aar格式)

    Android工程项目打包成SDK 在app的gradle下进行设置: (1)将apply plugin: ‘com.android.application’ 改为apply plugin: ‘com ...

  6. 应用shell脚本停启Tomcat

    最近在工作中频繁的操作多个tomcat,顺便就简单研究了一下 一. 简介 Shell 是一种与操作系统直接交互的程序,Unix系统中叫Bourne Shell,包括以下几种 Sh—Bourne She ...

  7. 为什么作为下游的WSUS更新服务器总有一直处于下载状态的文件

    /* Style Definitions */ table.MsoNormalTable {mso-style-name:普通表格; mso-tstyle-rowband-size:0; mso-ts ...

  8. java网络爬虫基础学习(四)

    jsoup的使用 jsoup介绍 jsoup是一款Java的HTML解析器,可直接解析某个URL地址.HTML文本内容.它提供了一套非常省力的API,可通过DOM,css以及类似于Jquery的操作方 ...

  9. Raneto部署知识库平台&支持中文搜索

    目录 环境 更新软件包 部署 Raneto 知识库平台 安装 Node 环境 安装 node 管理工具 查看 node 列表 安装需要的Node版本 使用 淘宝NPM源 git 使用代理设置,大陆地区 ...

  10. Ranger-Kafka插件安装

    Ranger-Kafka插件安装, 使用Ranger0.7.0版本,集成Kafka插件到Kafka集群, Kafka Plugin需要安装到所有的Kafka的集群节点上面. 1.登陆Kafka的安装用 ...