A neural chatbot using sequence to sequence model with attentional decoder. This is a fully functional chatbot.
原项目链接:https://github.com/chiphuyen/stanford-tensorflow-tutorials/tree/master/assignments/chatbot
一个使用序列的神经聊天者使用注意解码器对序列模型进行排序。 这是一个功能齐全的chatbot。
这是基于Google 翻译 Tensorflow 模型 https://github.com/tensorflow/models/blob/master/tutorials/rnn/translate/
Chip Huyen 等人的序列到序列模型(2014)
由Chip Huyen创建为作业3的起始代码,CS 20SI 课程:“用于深度学习研究的 TensorFlow ” cs20si.stanford.edu
详细的任务讲义和培训时间的信息可以在 http://web.stanford.edu/class/cs20si/assignments/a3.pdf 找到
A neural chatbot using sequence to sequence model with attentional decoder. This is a fully functional chatbot.
This is based on Google Translate Tensorflow model https://github.com/tensorflow/models/blob/master/tutorials/rnn/translate/
Sequence to sequence model by Cho et al.(2014)
Created by Chip Huyen as the starter code for assignment 3, class CS 20SI: "TensorFlow for Deep Learning Research" cs20si.stanford.edu
The detailed assignment handout and information on training time can be found at http://web.stanford.edu/class/cs20si/assignments/a3.pdf
Sample conversation
HUMAN ++++ hi
BOT ++++ hi . what ' s your name ?
HUMAN ++++ i'm chip
BOT ++++ please .
HUMAN ++++ please what?
BOT ++++ i don ' t know what to say .
HUMAN ++++ where are you from?
BOT ++++ california .
HUMAN ++++ do you like california?
BOT ++++ i ' m okay .
HUMAN ++++ i like california a lot
BOT ++++ of what ?
HUMAN ++++ i live here
BOT ++++ and what is it ?
HUMAN ++++ california
BOT ++++ i don ' t know what to say .
HUMAN ++++ i'm a student here
BOT ++++ and get it out of here .
HUMAN ++++ what do you like to do in your free time?
BOT ++++ and what about the gun ?
HUMAN ++++ do you have a gun?
BOT ++++ yes .
HUMAN ++++ you're dangerous!
BOT ++++ i ' m not .
HUMAN ++++ do you go hunting?
BOT ++++ i can do .
HUMAN ++++ what do you hunt?
BOT ++++ virgin .
HUMAN ++++ that's very bad
BOT ++++ and you in love ?
HUMAN ++++ no i'm not
BOT ++++ please - -
HUMAN ++++ okay, i am
BOT ++++ and you are good .
HUMAN ++++ yeah i am good too.
BOT ++++ good good to you .
HUMAN ++++ are you in love?
BOT ++++ i ' m ready .
HUMAN ++++ ready for what?
BOT ++++ for what ?
HUMAN ++++ for what?
BOT ++++ i don ' t know what to say .
HUMAN ++++ tell me
BOT ++++ i can do it .
HUMAN ++++ okay, tell me what you're ready for
BOT ++++ i ' m doing you .
HUMAN ++++ no you're not
BOT ++++ please !
HUMAN ++++ this is a strange conversation
BOT ++++ i don ' t know what to say .
HUMAN ++++ are you a guy?
BOT ++++ of what ?
HUMAN ++++ are you a boy?
BOT ++++ i ' m fine .
HUMAN ++++ are you a man?
BOT ++++ i ' m a little .
HUMAN ++++ what's your name?
BOT ++++ chris -
HUMAN ++++ chris who?
BOT ++++ cornelius .
HUMAN ++++ so i guess you're a guy.
BOT ++++ i am .
HUMAN ++++ okay
BOT ++++ okay ?
HUMAN ++++ do you have a girlfriend?
BOT ++++ i ' m sure .
HUMAN ++++ what's her name?
BOT ++++ let ' s talk about something else .
See output_convo.txt for more sample conversations.
Usage
Step 1: create a data folder in your project directory, download the Cornell Movie-Dialogs Corpus from https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html Unzip it
Step 2: python data.py
This will do all the pre-processing for the Cornell dataset.
Step 3: python chatbot.py --mode [train/chat]
If mode is train, then you train the chatbot. By default, the model will restore the previously trained weights (if there is any) and continue training up on that.
If you want to start training from scratch, please delete all the checkpoints in the checkpoints folder.
If the mode is chat, you'll go into the interaction mode with the bot.
By default, all the conversations you have with the chatbot will be written into the file output_convo.txt in the processed folder. If you run this chatbot, I kindly ask you to send me the output_convo.txt so that I can improve the chatbot. My email is huyenn@stanford.edu
If you find the tutorial helpful, please head over to Anonymous Chatlog Donation to see how you can help us create the first realistic dialogue dataset.
Thank you very much!
A neural chatbot using sequence to sequence model with attentional decoder. This is a fully functional chatbot.的更多相关文章
- 【论文阅读】Sequence to Sequence Learning with Neural Network
Sequence to Sequence Learning with NN <基于神经网络的序列到序列学习>原文google scholar下载. @author: Ilya Sutske ...
- PP: Sequence to sequence learning with neural networks
From google institution; 1. Before this, DNN cannot be used to map sequences to sequences. In this p ...
- Paper Reading - Convolutional Sequence to Sequence Learning ( CoRR 2017 ) ★
Link of the Paper: https://arxiv.org/abs/1705.03122 Motivation: Compared to recurrent layers, convol ...
- 深度学习方法(八):自然语言处理中的Encoder-Decoder模型,基本Sequence to Sequence模型
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld.技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. Encoder-Decoder(编码- ...
- [C5W3] Sequence Models - Sequence models & Attention mechanism
第三周 序列模型和注意力机制(Sequence models & Attention mechanism) 基础模型(Basic Models) 在这一周,你将会学习 seq2seq(sequ ...
- ChatGirl is an AI ChatBot based on TensorFlow Seq2Seq Model
Introduction [Under developing,it is not working well yet.But you can just train,and run it.] ChatGi ...
- sequence to sequence模型
sequence to sequence模型是一类End-to-End的算法框架,也就是从序列到序列的转换模型框架,应用在机器翻译,自动应答等场景. Seq2Seq一般是通过Encoder-Decod ...
- Convolutional Sequence to Sequence Learning 论文笔记
目录 简介 模型结构 Position Embeddings GLU or GRU Convolutional Block Structure Multi-step Attention Normali ...
- Paper Reading - Sequence to Sequence Learning with Neural Networks ( NIPS 2014 )
Link of the Paper: https://arxiv.org/pdf/1409.3215.pdf Main Points: Encoder-Decoder Model: Input seq ...
随机推荐
- JAVA类的方法调用和变量(全套)
一.类的分类: 1.普通类 2.抽象类(含有抽象方法的类) 3.静态类(不需要实例化,就可以使用的类) 二.方法的分类: 1.私有方法(只有类的内部才可以访问的方法) 2.保护方法(只有类的内部和该该 ...
- C++ 异常小记
catch必定使用拷贝构造函数 如下代码编译不通过,因为拷贝构造被标记delete #include <stdexcept> #include <cstdlib> #inclu ...
- 算法题丨4Sum
描述 Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = ...
- 你考虑清楚了吗就决定用 Bootstrap ?
近年来,在前端项目中, Bootstrap 已经成为了一个非常受欢迎的工具. Bootstrap 的确有很多优点,然而,如果你的团队中恰好有一个专职的前端工程师.那我推荐你们不要使用 Bootstra ...
- 从一个事件绑定说起 - DOM
事件绑定的方式 给 DOM 元素绑定事件分为两大类:在 html 中直接绑定 和 在 JavaScript 中绑定. Bind in HTML 在 HTML 中绑定事件叫做内联绑定事件,HTML 的元 ...
- Linux实战案例(2)实例讲解使用软连接的场景和过程
=================================== 使用场景:使用软连接简化版本切换动作 进入操作目录, cd /opt/modules/ ==================== ...
- 05_Linux目录文件操作命令2_我的Linux之路
这一节我们继续来学习Linux中对文件和目录的操作命令 mkdir 创建目录 mkdir (选项)(参数) 在Linux端可以使用mkdir来创建目录,如果你没有加其他的路径名,那么默认是在当前目录下 ...
- 运维-替换kibana徽标
作为一名纯运维人员,想更改kibana的徽标. 并不能像开发一样去看源码并修改源码. 所以我们可以替换徽标. 先来一个效果图.我的版本是5.5.1. 具体的修改过程: 在kibana安装路径下面. o ...
- ASP.NET CORE系列【一】搭建ASP.NET CORE项目
为什么要使用 ASP.NET Core? NET Core 刚发布的时候根据介绍就有点心里痒痒,微软的尿性都懂的,新东西bug太多,现在2.0也发布很久了,决定研究一下. ASP.NET Core官方 ...
- SpringMVC(十三):SpringMVC 与fastjson集成
1)fastjson jar包下载地址:https://sourceforge.net/projects/fastjson/下载完成后需要把jar包拷贝到WEB-INF/lib文件夹中.2)使用pom ...