A neural chatbot using sequence to sequence model with attentional decoder. This is a fully functional chatbot.
原项目链接:https://github.com/chiphuyen/stanford-tensorflow-tutorials/tree/master/assignments/chatbot
一个使用序列的神经聊天者使用注意解码器对序列模型进行排序。 这是一个功能齐全的chatbot。
这是基于Google 翻译 Tensorflow 模型 https://github.com/tensorflow/models/blob/master/tutorials/rnn/translate/
Chip Huyen 等人的序列到序列模型(2014)
由Chip Huyen创建为作业3的起始代码,CS 20SI 课程:“用于深度学习研究的 TensorFlow ” cs20si.stanford.edu
详细的任务讲义和培训时间的信息可以在 http://web.stanford.edu/class/cs20si/assignments/a3.pdf 找到
A neural chatbot using sequence to sequence model with attentional decoder. This is a fully functional chatbot.
This is based on Google Translate Tensorflow model https://github.com/tensorflow/models/blob/master/tutorials/rnn/translate/
Sequence to sequence model by Cho et al.(2014)
Created by Chip Huyen as the starter code for assignment 3, class CS 20SI: "TensorFlow for Deep Learning Research" cs20si.stanford.edu
The detailed assignment handout and information on training time can be found at http://web.stanford.edu/class/cs20si/assignments/a3.pdf
Sample conversation
HUMAN ++++ hi
BOT ++++ hi . what ' s your name ?
HUMAN ++++ i'm chip
BOT ++++ please .
HUMAN ++++ please what?
BOT ++++ i don ' t know what to say .
HUMAN ++++ where are you from?
BOT ++++ california .
HUMAN ++++ do you like california?
BOT ++++ i ' m okay .
HUMAN ++++ i like california a lot
BOT ++++ of what ?
HUMAN ++++ i live here
BOT ++++ and what is it ?
HUMAN ++++ california
BOT ++++ i don ' t know what to say .
HUMAN ++++ i'm a student here
BOT ++++ and get it out of here .
HUMAN ++++ what do you like to do in your free time?
BOT ++++ and what about the gun ?
HUMAN ++++ do you have a gun?
BOT ++++ yes .
HUMAN ++++ you're dangerous!
BOT ++++ i ' m not .
HUMAN ++++ do you go hunting?
BOT ++++ i can do .
HUMAN ++++ what do you hunt?
BOT ++++ virgin .
HUMAN ++++ that's very bad
BOT ++++ and you in love ?
HUMAN ++++ no i'm not
BOT ++++ please - -
HUMAN ++++ okay, i am
BOT ++++ and you are good .
HUMAN ++++ yeah i am good too.
BOT ++++ good good to you .
HUMAN ++++ are you in love?
BOT ++++ i ' m ready .
HUMAN ++++ ready for what?
BOT ++++ for what ?
HUMAN ++++ for what?
BOT ++++ i don ' t know what to say .
HUMAN ++++ tell me
BOT ++++ i can do it .
HUMAN ++++ okay, tell me what you're ready for
BOT ++++ i ' m doing you .
HUMAN ++++ no you're not
BOT ++++ please !
HUMAN ++++ this is a strange conversation
BOT ++++ i don ' t know what to say .
HUMAN ++++ are you a guy?
BOT ++++ of what ?
HUMAN ++++ are you a boy?
BOT ++++ i ' m fine .
HUMAN ++++ are you a man?
BOT ++++ i ' m a little .
HUMAN ++++ what's your name?
BOT ++++ chris -
HUMAN ++++ chris who?
BOT ++++ cornelius .
HUMAN ++++ so i guess you're a guy.
BOT ++++ i am .
HUMAN ++++ okay
BOT ++++ okay ?
HUMAN ++++ do you have a girlfriend?
BOT ++++ i ' m sure .
HUMAN ++++ what's her name?
BOT ++++ let ' s talk about something else .
See output_convo.txt for more sample conversations.
Usage
Step 1: create a data folder in your project directory, download the Cornell Movie-Dialogs Corpus from https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html Unzip it
Step 2: python data.py
This will do all the pre-processing for the Cornell dataset.
Step 3: python chatbot.py --mode [train/chat]
If mode is train, then you train the chatbot. By default, the model will restore the previously trained weights (if there is any) and continue training up on that.
If you want to start training from scratch, please delete all the checkpoints in the checkpoints folder.
If the mode is chat, you'll go into the interaction mode with the bot.
By default, all the conversations you have with the chatbot will be written into the file output_convo.txt in the processed folder. If you run this chatbot, I kindly ask you to send me the output_convo.txt so that I can improve the chatbot. My email is huyenn@stanford.edu
If you find the tutorial helpful, please head over to Anonymous Chatlog Donation to see how you can help us create the first realistic dialogue dataset.
Thank you very much!
A neural chatbot using sequence to sequence model with attentional decoder. This is a fully functional chatbot.的更多相关文章
- 【论文阅读】Sequence to Sequence Learning with Neural Network
Sequence to Sequence Learning with NN <基于神经网络的序列到序列学习>原文google scholar下载. @author: Ilya Sutske ...
- PP: Sequence to sequence learning with neural networks
From google institution; 1. Before this, DNN cannot be used to map sequences to sequences. In this p ...
- Paper Reading - Convolutional Sequence to Sequence Learning ( CoRR 2017 ) ★
Link of the Paper: https://arxiv.org/abs/1705.03122 Motivation: Compared to recurrent layers, convol ...
- 深度学习方法(八):自然语言处理中的Encoder-Decoder模型,基本Sequence to Sequence模型
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld.技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. Encoder-Decoder(编码- ...
- [C5W3] Sequence Models - Sequence models & Attention mechanism
第三周 序列模型和注意力机制(Sequence models & Attention mechanism) 基础模型(Basic Models) 在这一周,你将会学习 seq2seq(sequ ...
- ChatGirl is an AI ChatBot based on TensorFlow Seq2Seq Model
Introduction [Under developing,it is not working well yet.But you can just train,and run it.] ChatGi ...
- sequence to sequence模型
sequence to sequence模型是一类End-to-End的算法框架,也就是从序列到序列的转换模型框架,应用在机器翻译,自动应答等场景. Seq2Seq一般是通过Encoder-Decod ...
- Convolutional Sequence to Sequence Learning 论文笔记
目录 简介 模型结构 Position Embeddings GLU or GRU Convolutional Block Structure Multi-step Attention Normali ...
- Paper Reading - Sequence to Sequence Learning with Neural Networks ( NIPS 2014 )
Link of the Paper: https://arxiv.org/pdf/1409.3215.pdf Main Points: Encoder-Decoder Model: Input seq ...
随机推荐
- crlf注入攻击
1.crlf 注入攻击. 原理:http数据包通过\r\n\r\n来分开http header何http body 实现:首先这种攻击发生在应用层,且发生在服务器返回给我们的http reponse没 ...
- datable转xml
/// <summary> /// datatable转换xml /// </summary> /// <param name="xmlDS"> ...
- GIT入门笔记(12)- 删除文件、提交删除和恢复删除
在Git中,删除也是一个修改操作,我们实战一下, 1.先添加add一个新文件test.txt到Git并且提交commit到本地版本库: $ git add test.txt$ git commit - ...
- Python学习之dict和set
#coding=utf-8 # dict dict= {'bob': 40, 'andy': 30} print dict['bob'] # 通过dict提供的get方法,如果key不存在,可以返回N ...
- Django中自定义过滤器的使用
我在这里做的是: 从数据库查出id递增的一些信息,展示在前台. 编写一个过滤器判断查出数据的id是偶数的返回True 奇数返回False 1 创建项目,创建应用,注册应用,配置settings.py文 ...
- 如何在命令行中让python2和python3同存
初学python,你可能同时安装了python2和3.在我们安装好python之后,我们会面临这样一个问题,在命令行输入"python",可能会出错,或者只能调用其中一个版本,py ...
- DIY一个超简单的画图程序
编译环境:VS2017+Easy_X 最近笔者一直在翻阅Easy_X的帮助手册,学习到了一些关于获取鼠标状态消息函数的知识,感觉收获颇大,于是想试验一番,将所学知识运用出来.先补充一下在Easy_X中 ...
- 正则-匹配IP地址
>>> re.search(r'[aeiouAEIOU]','I love FishC.com!') 中括号里面的任意一个字符匹配成功就会返回数值 <_sre.SRE_Matc ...
- ASP.NET CORE系列【六】Entity Framework Core 之数据库迁移
前言 最近打算用.NET Core写一份简单的后台系统,来练练手 然后又用到了Entity Framework Core 发现园子里有些文章讲得不是那么细节,对于新手小白来说,可能会有点懵. 特意整理 ...
- [LeetCode] Delete and Earn 删除与赚取
Given an array nums of integers, you can perform operations on the array. In each operation, you pic ...