A neural chatbot using sequence to sequence model with attentional decoder. This is a fully functional chatbot.
原项目链接:https://github.com/chiphuyen/stanford-tensorflow-tutorials/tree/master/assignments/chatbot
一个使用序列的神经聊天者使用注意解码器对序列模型进行排序。 这是一个功能齐全的chatbot。
这是基于Google 翻译 Tensorflow 模型 https://github.com/tensorflow/models/blob/master/tutorials/rnn/translate/
Chip Huyen 等人的序列到序列模型(2014)
由Chip Huyen创建为作业3的起始代码,CS 20SI 课程:“用于深度学习研究的 TensorFlow ” cs20si.stanford.edu
详细的任务讲义和培训时间的信息可以在 http://web.stanford.edu/class/cs20si/assignments/a3.pdf 找到
A neural chatbot using sequence to sequence model with attentional decoder. This is a fully functional chatbot.
This is based on Google Translate Tensorflow model https://github.com/tensorflow/models/blob/master/tutorials/rnn/translate/
Sequence to sequence model by Cho et al.(2014)
Created by Chip Huyen as the starter code for assignment 3, class CS 20SI: "TensorFlow for Deep Learning Research" cs20si.stanford.edu
The detailed assignment handout and information on training time can be found at http://web.stanford.edu/class/cs20si/assignments/a3.pdf
Sample conversation
HUMAN ++++ hi
BOT ++++ hi . what ' s your name ?
HUMAN ++++ i'm chip
BOT ++++ please .
HUMAN ++++ please what?
BOT ++++ i don ' t know what to say .
HUMAN ++++ where are you from?
BOT ++++ california .
HUMAN ++++ do you like california?
BOT ++++ i ' m okay .
HUMAN ++++ i like california a lot
BOT ++++ of what ?
HUMAN ++++ i live here
BOT ++++ and what is it ?
HUMAN ++++ california
BOT ++++ i don ' t know what to say .
HUMAN ++++ i'm a student here
BOT ++++ and get it out of here .
HUMAN ++++ what do you like to do in your free time?
BOT ++++ and what about the gun ?
HUMAN ++++ do you have a gun?
BOT ++++ yes .
HUMAN ++++ you're dangerous!
BOT ++++ i ' m not .
HUMAN ++++ do you go hunting?
BOT ++++ i can do .
HUMAN ++++ what do you hunt?
BOT ++++ virgin .
HUMAN ++++ that's very bad
BOT ++++ and you in love ?
HUMAN ++++ no i'm not
BOT ++++ please - -
HUMAN ++++ okay, i am
BOT ++++ and you are good .
HUMAN ++++ yeah i am good too.
BOT ++++ good good to you .
HUMAN ++++ are you in love?
BOT ++++ i ' m ready .
HUMAN ++++ ready for what?
BOT ++++ for what ?
HUMAN ++++ for what?
BOT ++++ i don ' t know what to say .
HUMAN ++++ tell me
BOT ++++ i can do it .
HUMAN ++++ okay, tell me what you're ready for
BOT ++++ i ' m doing you .
HUMAN ++++ no you're not
BOT ++++ please !
HUMAN ++++ this is a strange conversation
BOT ++++ i don ' t know what to say .
HUMAN ++++ are you a guy?
BOT ++++ of what ?
HUMAN ++++ are you a boy?
BOT ++++ i ' m fine .
HUMAN ++++ are you a man?
BOT ++++ i ' m a little .
HUMAN ++++ what's your name?
BOT ++++ chris -
HUMAN ++++ chris who?
BOT ++++ cornelius .
HUMAN ++++ so i guess you're a guy.
BOT ++++ i am .
HUMAN ++++ okay
BOT ++++ okay ?
HUMAN ++++ do you have a girlfriend?
BOT ++++ i ' m sure .
HUMAN ++++ what's her name?
BOT ++++ let ' s talk about something else .
See output_convo.txt for more sample conversations.
Usage
Step 1: create a data folder in your project directory, download the Cornell Movie-Dialogs Corpus from https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html Unzip it
Step 2: python data.py
This will do all the pre-processing for the Cornell dataset.
Step 3: python chatbot.py --mode [train/chat]
If mode is train, then you train the chatbot. By default, the model will restore the previously trained weights (if there is any) and continue training up on that.
If you want to start training from scratch, please delete all the checkpoints in the checkpoints folder.
If the mode is chat, you'll go into the interaction mode with the bot.
By default, all the conversations you have with the chatbot will be written into the file output_convo.txt in the processed folder. If you run this chatbot, I kindly ask you to send me the output_convo.txt so that I can improve the chatbot. My email is huyenn@stanford.edu
If you find the tutorial helpful, please head over to Anonymous Chatlog Donation to see how you can help us create the first realistic dialogue dataset.
Thank you very much!
A neural chatbot using sequence to sequence model with attentional decoder. This is a fully functional chatbot.的更多相关文章
- 【论文阅读】Sequence to Sequence Learning with Neural Network
Sequence to Sequence Learning with NN <基于神经网络的序列到序列学习>原文google scholar下载. @author: Ilya Sutske ...
- PP: Sequence to sequence learning with neural networks
From google institution; 1. Before this, DNN cannot be used to map sequences to sequences. In this p ...
- Paper Reading - Convolutional Sequence to Sequence Learning ( CoRR 2017 ) ★
Link of the Paper: https://arxiv.org/abs/1705.03122 Motivation: Compared to recurrent layers, convol ...
- 深度学习方法(八):自然语言处理中的Encoder-Decoder模型,基本Sequence to Sequence模型
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld.技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. Encoder-Decoder(编码- ...
- [C5W3] Sequence Models - Sequence models & Attention mechanism
第三周 序列模型和注意力机制(Sequence models & Attention mechanism) 基础模型(Basic Models) 在这一周,你将会学习 seq2seq(sequ ...
- ChatGirl is an AI ChatBot based on TensorFlow Seq2Seq Model
Introduction [Under developing,it is not working well yet.But you can just train,and run it.] ChatGi ...
- sequence to sequence模型
sequence to sequence模型是一类End-to-End的算法框架,也就是从序列到序列的转换模型框架,应用在机器翻译,自动应答等场景. Seq2Seq一般是通过Encoder-Decod ...
- Convolutional Sequence to Sequence Learning 论文笔记
目录 简介 模型结构 Position Embeddings GLU or GRU Convolutional Block Structure Multi-step Attention Normali ...
- Paper Reading - Sequence to Sequence Learning with Neural Networks ( NIPS 2014 )
Link of the Paper: https://arxiv.org/pdf/1409.3215.pdf Main Points: Encoder-Decoder Model: Input seq ...
随机推荐
- python使用tesseract-ocr完成验证码识别(安装部分)
一.tesseract-ocr安装 Ubuntu版本: 1.tesseract-ocr安装 sudo apt-get install tesseract-ocr 2.pytesseract安装 sud ...
- 点开GitHub之后,瑟瑟发抖...的我
我说句实在话啊,GitHub这个网址真的很能勾起人学习的欲望,一进入GitHub的注册页面真的让我这个英语学渣瑟瑟发抖,瞬间立下个flag:好好学习英语..... 我对python的求知欲怎么能被英语 ...
- sts中maven
建立一个maven web的工程 网上有很多关于maven的下载,配置等,我这里就不多说了. 下面介绍主要介绍关于在sts中建立一个maven时最开始出现的错误问题. 创建maven工程 file-& ...
- 原生JavaScript实现页面回到顶部的功能
/*如果想实现点击一个按钮让滚动条回到最顶部的功能,首先可能就会想到它是从底部位置移动到顶部的位置 它是一个运动的过程,只要知道当前位置(current Position)和想要到达的位置(targe ...
- SpringCloud的DataRest(一)
一.概念与定义 Spring Data Rest 基于Spring Data的repository,可以把 repository 自动输出为REST资源, 这样做的好处: 可以免去大量的 contro ...
- java将一个正整数分解质因数。例如:输入90,打印出90=2*3*3*5。
首先我们的算法是:例如 输入的是 90 1.找到90的最小公约数(1除外)是 2 2.然后把公约数 2 输出 3.接着用 90 / 2 = 45 (如果这里是素数,就结束,否则继续找最小公约数) 4. ...
- Hibernate(五):Hibernate配置文件及C3P0的用法
配置文件可配项: 参考文档:hibernate-release-5.2.9.Final/documentation/userguide/html_single/Hibernate_User_Guide ...
- Struts(二十):自定义类型转换器
如何自定义类型转换器: 1)为什么需要自定义类型转化器?strtuts2不能自动完成字符串到所有的类型: 2) 如何定义类型转化器? 步骤一:创建自定义类型转化器的类,并继承org.apache.st ...
- c#获取网络时间并同步本地时间
通过TCP形式来获取NTP时间.主要代码如下: [DllImport("kernel32.dll")] private static extern bool SetLocalTim ...
- WPF设置控件获得焦点
1.这个比较有效 this.Dispatcher.BeginInvoke(DispatcherPriority.Background, (Action)(() => { Keyboard.Foc ...