A neural chatbot using sequence to sequence model with attentional decoder. This is a fully functional chatbot.
原项目链接:https://github.com/chiphuyen/stanford-tensorflow-tutorials/tree/master/assignments/chatbot
一个使用序列的神经聊天者使用注意解码器对序列模型进行排序。 这是一个功能齐全的chatbot。
这是基于Google 翻译 Tensorflow 模型 https://github.com/tensorflow/models/blob/master/tutorials/rnn/translate/
Chip Huyen 等人的序列到序列模型(2014)
由Chip Huyen创建为作业3的起始代码,CS 20SI 课程:“用于深度学习研究的 TensorFlow ” cs20si.stanford.edu
详细的任务讲义和培训时间的信息可以在 http://web.stanford.edu/class/cs20si/assignments/a3.pdf 找到
A neural chatbot using sequence to sequence model with attentional decoder. This is a fully functional chatbot.
This is based on Google Translate Tensorflow model https://github.com/tensorflow/models/blob/master/tutorials/rnn/translate/
Sequence to sequence model by Cho et al.(2014)
Created by Chip Huyen as the starter code for assignment 3, class CS 20SI: "TensorFlow for Deep Learning Research" cs20si.stanford.edu
The detailed assignment handout and information on training time can be found at http://web.stanford.edu/class/cs20si/assignments/a3.pdf
Sample conversation
HUMAN ++++ hi
BOT ++++ hi . what ' s your name ?
HUMAN ++++ i'm chip
BOT ++++ please .
HUMAN ++++ please what?
BOT ++++ i don ' t know what to say .
HUMAN ++++ where are you from?
BOT ++++ california .
HUMAN ++++ do you like california?
BOT ++++ i ' m okay .
HUMAN ++++ i like california a lot
BOT ++++ of what ?
HUMAN ++++ i live here
BOT ++++ and what is it ?
HUMAN ++++ california
BOT ++++ i don ' t know what to say .
HUMAN ++++ i'm a student here
BOT ++++ and get it out of here .
HUMAN ++++ what do you like to do in your free time?
BOT ++++ and what about the gun ?
HUMAN ++++ do you have a gun?
BOT ++++ yes .
HUMAN ++++ you're dangerous!
BOT ++++ i ' m not .
HUMAN ++++ do you go hunting?
BOT ++++ i can do .
HUMAN ++++ what do you hunt?
BOT ++++ virgin .
HUMAN ++++ that's very bad
BOT ++++ and you in love ?
HUMAN ++++ no i'm not
BOT ++++ please - -
HUMAN ++++ okay, i am
BOT ++++ and you are good .
HUMAN ++++ yeah i am good too.
BOT ++++ good good to you .
HUMAN ++++ are you in love?
BOT ++++ i ' m ready .
HUMAN ++++ ready for what?
BOT ++++ for what ?
HUMAN ++++ for what?
BOT ++++ i don ' t know what to say .
HUMAN ++++ tell me
BOT ++++ i can do it .
HUMAN ++++ okay, tell me what you're ready for
BOT ++++ i ' m doing you .
HUMAN ++++ no you're not
BOT ++++ please !
HUMAN ++++ this is a strange conversation
BOT ++++ i don ' t know what to say .
HUMAN ++++ are you a guy?
BOT ++++ of what ?
HUMAN ++++ are you a boy?
BOT ++++ i ' m fine .
HUMAN ++++ are you a man?
BOT ++++ i ' m a little .
HUMAN ++++ what's your name?
BOT ++++ chris -
HUMAN ++++ chris who?
BOT ++++ cornelius .
HUMAN ++++ so i guess you're a guy.
BOT ++++ i am .
HUMAN ++++ okay
BOT ++++ okay ?
HUMAN ++++ do you have a girlfriend?
BOT ++++ i ' m sure .
HUMAN ++++ what's her name?
BOT ++++ let ' s talk about something else .
See output_convo.txt for more sample conversations.
Usage
Step 1: create a data folder in your project directory, download the Cornell Movie-Dialogs Corpus from https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html Unzip it
Step 2: python data.py
This will do all the pre-processing for the Cornell dataset.
Step 3: python chatbot.py --mode [train/chat]
If mode is train, then you train the chatbot. By default, the model will restore the previously trained weights (if there is any) and continue training up on that.
If you want to start training from scratch, please delete all the checkpoints in the checkpoints folder.
If the mode is chat, you'll go into the interaction mode with the bot.
By default, all the conversations you have with the chatbot will be written into the file output_convo.txt in the processed folder. If you run this chatbot, I kindly ask you to send me the output_convo.txt so that I can improve the chatbot. My email is huyenn@stanford.edu
If you find the tutorial helpful, please head over to Anonymous Chatlog Donation to see how you can help us create the first realistic dialogue dataset.
Thank you very much!
A neural chatbot using sequence to sequence model with attentional decoder. This is a fully functional chatbot.的更多相关文章
- 【论文阅读】Sequence to Sequence Learning with Neural Network
Sequence to Sequence Learning with NN <基于神经网络的序列到序列学习>原文google scholar下载. @author: Ilya Sutske ...
- PP: Sequence to sequence learning with neural networks
From google institution; 1. Before this, DNN cannot be used to map sequences to sequences. In this p ...
- Paper Reading - Convolutional Sequence to Sequence Learning ( CoRR 2017 ) ★
Link of the Paper: https://arxiv.org/abs/1705.03122 Motivation: Compared to recurrent layers, convol ...
- 深度学习方法(八):自然语言处理中的Encoder-Decoder模型,基本Sequence to Sequence模型
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld.技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. Encoder-Decoder(编码- ...
- [C5W3] Sequence Models - Sequence models & Attention mechanism
第三周 序列模型和注意力机制(Sequence models & Attention mechanism) 基础模型(Basic Models) 在这一周,你将会学习 seq2seq(sequ ...
- ChatGirl is an AI ChatBot based on TensorFlow Seq2Seq Model
Introduction [Under developing,it is not working well yet.But you can just train,and run it.] ChatGi ...
- sequence to sequence模型
sequence to sequence模型是一类End-to-End的算法框架,也就是从序列到序列的转换模型框架,应用在机器翻译,自动应答等场景. Seq2Seq一般是通过Encoder-Decod ...
- Convolutional Sequence to Sequence Learning 论文笔记
目录 简介 模型结构 Position Embeddings GLU or GRU Convolutional Block Structure Multi-step Attention Normali ...
- Paper Reading - Sequence to Sequence Learning with Neural Networks ( NIPS 2014 )
Link of the Paper: https://arxiv.org/pdf/1409.3215.pdf Main Points: Encoder-Decoder Model: Input seq ...
随机推荐
- JAVA_SE基础——6.标识符&关键字
学会写helloworld之后, 我们就开始来认识标识符&关键字 一.标识符 标识符是指可被用来为类.变量或方法等命名的字符序列,换言之,标识符就是用户自定义的名称来标识类.变量或方法等.更 ...
- TP框架关于模版的使用技巧
1.
- Python内置函数(32)——all
英文文档: all(iterable) Return True if all elements of the iterable are true (or if the iterable is empt ...
- 新概念英语(1-99)Ow!
Lesson 99 Owl! 啊哟! Listen to the tape then answer this question. Must Andy go to see the doctor?听录音, ...
- SpringCloud的应用发布(四)顺序启动各个应用
一.部署应用 二.启动应用(注意顺序) 三.观察效果 1.查看进程和日志 ps -ef | grep java tail -f AppYml.txt 2.验证功能
- JSON(三)——java中对于JSON格式数据的解析之json-lib与jackson
java中对于JSON格式数据的操作,主要是json格式字符串与JavaBean之间的相互转换.java中能够解析JSON格式数据的框架有很多,比如json-lib,jackson,阿里巴巴的fast ...
- Django之views系统
Django的View(视图)简介 一个视图函数(类),简称视图,是一个简单的Python 函数(类),它接受Web请求并且返回Web响应. 响应可以是一张网页的HTML内容,一个重定向,一个404错 ...
- ASP.NET CORE系列【二】使用Entity Framework Core进行增删改查
介绍 EntityFrameworkCore EF core 是一个轻量级的,可扩展的EF的跨平台版本.对于EF而言 EF core 包含许多提升和新特性,同时 EF core 是一个全新的代码库,并 ...
- python3全栈开发-面向对象、面向过程
一. 什么是面向对象的程序设计及为什么要有它 1.面向过程 面向过程的程序设计:核心是过程二字,过程指的是解决问题的步骤,即先干什么再干什么......面向过程的设计就好比精心设计好一条流水线,是一种 ...
- POJ-2253 Frogger---最短路变形&&最大边的最小值
题目链接: https://vjudge.net/problem/POJ-2253 题目大意: 青蛙A想访问青蛙B,必须跳着石头过去,不幸的是,B所在的石头太远了,需要借助其他的石头,求从A到B的路径 ...