原项目链接:https://github.com/chiphuyen/stanford-tensorflow-tutorials/tree/master/assignments/chatbot

一个使用序列的神经聊天者使用注意解码器对序列模型进行排序。 这是一个功能齐全的chatbot。

这是基于Google 翻译 Tensorflow 模型 https://github.com/tensorflow/models/blob/master/tutorials/rnn/translate/

Chip Huyen 等人的序列到序列模型(2014)

由Chip Huyen创建为作业3的起始代码,CS 20SI 课程:“用于深度学习研究的 TensorFlow ” cs20si.stanford.edu

详细的任务讲义和培训时间的信息可以在 http://web.stanford.edu/class/cs20si/assignments/a3.pdf 找到

A neural chatbot using sequence to sequence model with attentional decoder. This is a fully functional chatbot.

This is based on Google Translate Tensorflow model https://github.com/tensorflow/models/blob/master/tutorials/rnn/translate/

Sequence to sequence model by Cho et al.(2014)

Created by Chip Huyen as the starter code for assignment 3, class CS 20SI: "TensorFlow for Deep Learning Research" cs20si.stanford.edu

The detailed assignment handout and information on training time can be found at http://web.stanford.edu/class/cs20si/assignments/a3.pdf

Sample conversation

HUMAN ++++ hi

BOT ++++ hi . what ' s your name ?

HUMAN ++++ i'm chip

BOT ++++ please .

HUMAN ++++ please what?

BOT ++++ i don ' t know what to say .

HUMAN ++++ where are you from?

BOT ++++ california .

HUMAN ++++ do you like california?

BOT ++++ i ' m okay .

HUMAN ++++ i like california a lot

BOT ++++ of what ?

HUMAN ++++ i live here

BOT ++++ and what is it ?

HUMAN ++++ california

BOT ++++ i don ' t know what to say .

HUMAN ++++ i'm a student here

BOT ++++ and get it out of here .

HUMAN ++++ what do you like to do in your free time?

BOT ++++ and what about the gun ?

HUMAN ++++ do you have a gun?

BOT ++++ yes .

HUMAN ++++ you're dangerous!

BOT ++++ i ' m not .

HUMAN ++++ do you go hunting?

BOT ++++ i can do .

HUMAN ++++ what do you hunt?

BOT ++++ virgin .

HUMAN ++++ that's very bad

BOT ++++ and you in love ?

HUMAN ++++ no i'm not

BOT ++++ please - -

HUMAN ++++ okay, i am

BOT ++++ and you are good .

HUMAN ++++ yeah i am good too.

BOT ++++ good good to you .

HUMAN ++++ are you in love?

BOT ++++ i ' m ready .

HUMAN ++++ ready for what?

BOT ++++ for what ?

HUMAN ++++ for what?

BOT ++++ i don ' t know what to say .

HUMAN ++++ tell me

BOT ++++ i can do it .

HUMAN ++++ okay, tell me what you're ready for

BOT ++++ i ' m doing you .

HUMAN ++++ no you're not

BOT ++++ please !

HUMAN ++++ this is a strange conversation

BOT ++++ i don ' t know what to say .

HUMAN ++++ are you a guy?

BOT ++++ of what ?

HUMAN ++++ are you a boy?

BOT ++++ i ' m fine .

HUMAN ++++ are you a man?

BOT ++++ i ' m a little .

HUMAN ++++ what's your name?

BOT ++++ chris -

HUMAN ++++ chris who?

BOT ++++ cornelius .

HUMAN ++++ so i guess you're a guy.

BOT ++++ i am .

HUMAN ++++ okay

BOT ++++ okay ?

HUMAN ++++ do you have a girlfriend?

BOT ++++ i ' m sure .

HUMAN ++++ what's her name?

BOT ++++ let ' s talk about something else .

See output_convo.txt for more sample conversations.

Usage

Step 1: create a data folder in your project directory, download the Cornell Movie-Dialogs Corpus from https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html Unzip it

Step 2: python data.py

This will do all the pre-processing for the Cornell dataset.

Step 3: python chatbot.py --mode [train/chat]

If mode is train, then you train the chatbot. By default, the model will restore the previously trained weights (if there is any) and continue training up on that.

If you want to start training from scratch, please delete all the checkpoints in the checkpoints folder.

If the mode is chat, you'll go into the interaction mode with the bot.

By default, all the conversations you have with the chatbot will be written into the file output_convo.txt in the processed folder. If you run this chatbot, I kindly ask you to send me the output_convo.txt so that I can improve the chatbot. My email is huyenn@stanford.edu

If you find the tutorial helpful, please head over to Anonymous Chatlog Donation to see how you can help us create the first realistic dialogue dataset.

Thank you very much!

A neural chatbot using sequence to sequence model with attentional decoder. This is a fully functional chatbot.的更多相关文章

  1. 【论文阅读】Sequence to Sequence Learning with Neural Network

    Sequence to Sequence Learning with NN <基于神经网络的序列到序列学习>原文google scholar下载. @author: Ilya Sutske ...

  2. PP: Sequence to sequence learning with neural networks

    From google institution; 1. Before this, DNN cannot be used to map sequences to sequences. In this p ...

  3. Paper Reading - Convolutional Sequence to Sequence Learning ( CoRR 2017 ) ★

    Link of the Paper: https://arxiv.org/abs/1705.03122 Motivation: Compared to recurrent layers, convol ...

  4. 深度学习方法(八):自然语言处理中的Encoder-Decoder模型,基本Sequence to Sequence模型

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld.技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. Encoder-Decoder(编码- ...

  5. [C5W3] Sequence Models - Sequence models & Attention mechanism

    第三周 序列模型和注意力机制(Sequence models & Attention mechanism) 基础模型(Basic Models) 在这一周,你将会学习 seq2seq(sequ ...

  6. ChatGirl is an AI ChatBot based on TensorFlow Seq2Seq Model

    Introduction [Under developing,it is not working well yet.But you can just train,and run it.] ChatGi ...

  7. sequence to sequence模型

    sequence to sequence模型是一类End-to-End的算法框架,也就是从序列到序列的转换模型框架,应用在机器翻译,自动应答等场景. Seq2Seq一般是通过Encoder-Decod ...

  8. Convolutional Sequence to Sequence Learning 论文笔记

    目录 简介 模型结构 Position Embeddings GLU or GRU Convolutional Block Structure Multi-step Attention Normali ...

  9. Paper Reading - Sequence to Sequence Learning with Neural Networks ( NIPS 2014 )

    Link of the Paper: https://arxiv.org/pdf/1409.3215.pdf Main Points: Encoder-Decoder Model: Input seq ...

随机推荐

  1. SpringCloud的部署模型

    http://www.th7.cn/Program/java/201608/919853.shtml

  2. Jetty入门(1-1)Jetty入门教程

    一.Jetty是什么? 1.Jetty 是一个Java语言编写的,开源的Servlet容器和应用服务器. Jetty 极度轻量级.高便携性.功能强大.灵活和扩展性好,而且支持各种技术如SPDY.Web ...

  3. gradle入门(1-3)使用gradle开发一个发布版本

    需求描述 1.使用Maven central仓库.2.使用Log4j写入日志.3.包含单元测试,保证正确的信息返回,单元测试必须使用JUnit编写.4.创建一个可执行的Jar文件. 我们来看一下怎样实 ...

  4. SpringCloud的注解:EnableEurekaClient vs EnableDiscoveryClient

    What's the difference between EnableEurekaClient and EnableDiscoveryClient? In some applications, I ...

  5. 前端 jQuery

    一.jQuery是什么? <1>jQuery由美国人John Resig创建,至今已吸引了来自世界各地众多JavaScript高手加入其team. <2>jQuery是继pro ...

  6. 竞赛基础篇---部分和问题(DFS)

    问题链接:http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=1058 描述 给定整数a1.a2........an,判断是否可以从中选出若干数,使 ...

  7. [学习笔记]15个QA让你快速入门51单片机开发

    一.C语言相关 Q1:sbit与sfr代表是什么?有什么作用? Q2:#define OSC_FREQ  22118400L这句宏命令里的“L”是什么意思? Q3:我粘贴了别人的代码,怎么发现没有un ...

  8. [LeetCode] Maximum Average Subarray II 子数组的最大平均值之二

    Given an array consisting of n integers, find the contiguous subarray whose length is greater than o ...

  9. js 一些基础的理解

    javascript(JS)的组成? DOM 文档对象模型 BOM 浏览器对象模型 ECMAScript javascript(JS)在页面中处理了什么事情? 特效交互 数据交互 逻辑操作 常见特效的 ...

  10. 以 Angular 的姿势打开 Font-Awesome

    环境 Angular: v5.2.9 Font-Awesome: v5.0.10 angular-fontawesome: v0.1.0-9 无须再用传统的 Web Font 方式 以前习惯于 Fon ...