洛谷 P3708 koishi的数学题
找规律发现\( f[i]=f[i-1]+n-\sum_{i的因数和} \)
一A了深(sh)蓝(ui)题的我被找规律绿题卡死
记得开long long
#include<iostream>
#include<cstdio>
using namespace std;
const int N=1000005;
long long n,sum[N],f[N];
int main()
{
ios::sync_with_stdio(false);
scanf("%lld",&n);
for(long long i=1;i<=n;i++)
for(long long j=i;j<=n;j+=i)
sum[j]+=i;
f[1]=n-1;
for(long long i=2;i<=n;i++)
f[i]=f[i-1]+n-sum[i];
for(long long i=1;i<=n;i++)
printf("%lld ",f[i]);
return 0;
}
洛谷 P3708 koishi的数学题的更多相关文章
- 洛谷P3602 Koishi Loves Segments(贪心,multiset)
洛谷题目传送门 贪心小水题. 把线段按左端点从小到大排序,限制点也是从小到大排序,然后一起扫一遍. 对于每一个限制点实时维护覆盖它的所有线段,如果超过限制,则贪心地把右端点最大的线段永远删去,不计入答 ...
- 洛谷 P3711 - 仓鼠的数学题(多项式)
洛谷题面传送门 提供一种不太一样的做法. 假设要求的多项式为 \(f(x)\).我们考察 \(f(x)-f(x-1)\),不难发现其等于 \(\sum\limits_{i=0}^na_ix^i\) 考 ...
- 【洛谷P3708】Koishi的数学题
可以很显然的看出分块的性质…… 看不出来的打个表也能看出来. 然后就是随手做做就行了. #include<bits/stdc++.h> #define N 1000005 typedef ...
- 洛谷 P3711 仓鼠的数学题 [伯努利数 fft]
P3711 仓鼠的数学题 题意: \[ S_m(x) = \sum_{k=0}^x k^m, 0^0=1\quad 求 \sum_{m=0}^n S_m(x)a_m \] 的答案多项式\(\sum_{ ...
- E 洛谷 P3598 Koishi Loves Number Theory[数论]
题目描述 Koishi十分喜欢数论. 她的朋友Flandre为了检测她和数论是不是真爱,给了她一个问题. 已知 给定和个数,求对取模. 按照套路,呆萌的Koishi当然假装不会做了,于是她来向你请教这 ...
- D 洛谷 P3602 Koishi Loves Segments [贪心 树状数组+堆]
题目描述 Koishi喜欢线段. 她的条线段都能表示成数轴上的某个闭区间.Koishi喜欢在把所有线段都放在数轴上,然后数出某些点被多少线段覆盖了. Flandre看她和线段玩得很起开心,就抛给她一个 ...
- C 洛谷 P3599 Koishi Loves Construction [构造 打表观察]
题目描述 Koishi决定走出幻想乡成为数学大师! Flandre听说她数学学的很好,就给Koishi出了这样一道构造题: Task1:试判断能否构造并构造一个长度为的的排列,满足其个前缀和在模的意义 ...
- 洛谷 P3768 简单的数学题 解题报告
P3768 简单的数学题 题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数\(n\)和一个整数\(p,\)你需要求出\((\sum_{i=1}^n\sum_{j=1}^n ijgc ...
- 洛谷P3768 简单的数学题
解: 神奇的一批......参观yyb巨神的博客. 大致思路就是第一步枚举gcd,发现后面有个限制是gcd=1,用反演,得到的F(x)是两个等差数列求积. 然后发现有个地方我们除法的除数是乘积,于是换 ...
随机推荐
- webstorm初始化
1.皮肤设置,重启后Terminal皮肤生效 2.排除目录 2.1全局排除 2.2局部排除 选中文件夹 右击Make Directroy As 选择 Excluded 3.代码自定义 3.1 cons ...
- java课堂测试—根据模板完成一个简单的技术需求征集系统
课堂上老师发布了一个页面模板要求让我们实现一个系统的功能,模仿以后后端的简单工作情况. 然后在这个模板的基础上,提供了一个注册的网页模板,接着点击注册的按钮,发现register里面调用了zhu/zh ...
- Java实验--继承与多态
---恢复内容开始--- 题目如下: [实验任务一]:面积计算(设计型). 1. 实验要求: 实验报告中要求包括程序设计思想.程序流程图.源代码.运行结果截图.编译错误分析等内容. 2.实验内容: ( ...
- chrome插件vimium的安装和使用
vimium工具的作用:使你脱离鼠标,使用键盘方便操作页面,默认对所有网站生效 1.chrome商店里有的,但是,我怎么安装,都不行 2.源码安装:http://vimium.github.io/ h ...
- [开源]OSharpNS - .net core 快速开发框架 - 简介
什么是OSharp OSharpNS全称OSharp Framework with .NetStandard2.0,是一个基于.NetStandard2.0开发的一个.NetCore快速开发框架.这个 ...
- HTML5 <template>标签元素简介
一.HTML5 template元素初面 <template>元素,基本上可以确定是2013年才出现的.干嘛用的呢,顾名思意,就是用来声明是“模板元素”. 目前,我们在HTML中嵌入模板H ...
- MySQL多实例配置(一)
MySQL数据库的集中化运维,能够通过在一台MySQL数据库服务器上,部署多个MySQL实例.该功能是通过mysqld_multi来实现.mysqld_multi用于管理多个mysqld的服务进程,这 ...
- EA生成实体类代码
引言 在做机房个人版重构的时候,就听说了EA是一个强大的软件.仅仅只是知道的时候,已经画完了图,没有怎么用EA其它的功能,所以一直没有见识过罢了.如今到了机房合作了,想到EA一定要好好用,这样能省不少 ...
- web 开发之js---ajax 异步处理
本文介绍了如何创建能够适应不同浏览器的XMLHttpRequest实例,建立和发送请求,并响应服务器.您将开始接触最基本和基础性的有关Ajax的全部对象和编程方法:XMLHttpRequest对象.该 ...
- 一个JS引发的跨域问题
忽然遇上跨域错误. 我们有张页面,使用了EXT.js,在本地运行正常,部署到服务器上,出不来数据.F12调试,提示有跨域错误? XMLHttpRequest cannot load http://19 ...